
CS 6347

Lecture 4

Markov Random Fields



Recap

• Announcements

• First homework is available on eLearning

• Reminder:  Office hours Tuesday/Friday from 10am-11am

• Last Time

• Bayesian networks

• Today

• Markov random fields
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D-separation

• Let 𝐼𝐼(𝑝𝑝) be the set of all independence relationships in the 
joint distribution 𝑝𝑝 and 𝐼𝐼(𝐺𝐺) be the set of all independence 
relationships implied by the graph 𝐺𝐺

• We say that 𝐺𝐺 is an I-map for 𝐼𝐼(𝑝𝑝) if 𝐼𝐼 𝐺𝐺 ⊆ 𝐼𝐼(𝑝𝑝)

• Theorem:  the joint probability distribution, 𝑝𝑝, factorizes with 
respect to the DAG 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) iff 𝐺𝐺 is an I-map for 𝐼𝐼(𝑝𝑝)

• An I-map is perfect if 𝐼𝐼 𝐺𝐺 = 𝐼𝐼 𝑝𝑝

• Not always possible to perfectly represent all of the independence 
relations with a graph
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Naïve Bayes

𝑝𝑝 𝑦𝑦, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝(𝑦𝑦)𝑝𝑝 𝑥𝑥1|𝑦𝑦 … 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑦𝑦)

• In practice, we often have variables that we observe directly 
and those that can only be observed indirectly
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𝑌𝑌

𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑛𝑛...



Naïve Bayes

𝑝𝑝 𝑦𝑦, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝(𝑦𝑦)𝑝𝑝 𝑥𝑥1|𝑦𝑦 … 𝑝𝑝(𝑥𝑥𝑛𝑛|𝑦𝑦)

• This model assumes that 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent given 𝑌𝑌, 
sometimes called naïve Bayes
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Example:  Naïve Bayes

• Let 𝑌𝑌 be a binary random variable indicating whether or not 
an email is a piece of spam

• For each word in the dictionary, create a binary random 
variable 𝑋𝑋𝑖𝑖 indicating whether or not word 𝑖𝑖 appears in the 
email

• For simplicity, we will assume that 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are independent 
given 𝑌𝑌

• How do we compute the probability that an email is spam?
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Hidden Markov Models

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑇𝑇 ,𝑦𝑦1, … ,𝑦𝑦𝑇𝑇 = 𝑝𝑝 𝑦𝑦1 𝑝𝑝 𝑥𝑥1 𝑦𝑦1 �
𝑡𝑡=2

𝑝𝑝 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡)

• Used in coding, speech recognition, etc.

• Independence assertions?

𝑌𝑌1 𝑌𝑌2 𝑌𝑌𝑇𝑇−1 𝑌𝑌𝑇𝑇...

𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑇𝑇−1 𝑋𝑋𝑇𝑇...



Markov Random Fields (MRFs)

• A Markov random field is an undirected graphical model

• Undirected graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• One node for each random variable

• Nonnegative potential function or "factor" associated 
with cliques, 𝐶𝐶, of the graph

• Nonnegative potential functions represent interactions 
and need not correspond to conditional probabilities 
(may not even sum to one)
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Markov Random Fields (MRFs)

• A Markov random field is an undirected graphical model

• Corresponds to a factorization of the joint distribution 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑐𝑐∈𝐶𝐶

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐)

𝑍𝑍 = �
𝑥𝑥1′ ,…,𝑥𝑥𝑛𝑛′

�
𝑐𝑐∈𝐶𝐶

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐′)
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Markov Random Fields (MRFs)

• A Markov random field is an undirected graphical model

• Corresponds to a factorization of the joint distribution 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 =
1
𝑍𝑍
�
𝑐𝑐∈𝐶𝐶

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐)

𝑍𝑍 = �
𝑥𝑥1′ ,…,𝑥𝑥𝑛𝑛′

�
𝑐𝑐∈𝐶𝐶

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐′)
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Normalizing constant, 𝑍𝑍, often called the partition function



Independence Assertions

𝑝𝑝 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐶𝐶 =
1
𝑍𝑍
𝜓𝜓𝐴𝐴𝐵𝐵 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 𝜓𝜓𝐵𝐵𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶)

• How does separation imply independence?

• Showed that 𝐴𝐴 ⊥ 𝐶𝐶 | 𝐵𝐵 on board last lecture

11

𝐴𝐴 𝐵𝐵 𝐶𝐶



Independence Assertions

• If 𝑋𝑋 ⊆ 𝑉𝑉 is graph separated from 𝑌𝑌 ⊆ 𝑉𝑉 by 𝑍𝑍 ⊆ 𝑉𝑉, (i.e., all 
paths from 𝑋𝑋 to 𝑌𝑌 go through 𝑍𝑍) then 𝑋𝑋 ⊥ 𝑌𝑌 | 𝑍𝑍

• What independence assertions follow from this MRF?
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𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐷𝐷



Independence Assertions

• Each variable is independent of all of its non-neighbors given 
its neighbors

• All paths leaving a single variable must pass through some 
neighbor

• If the joint probability distribution, 𝑝𝑝, factorizes with respect 
to the graph 𝐺𝐺, then 𝐺𝐺 is an I-map for 𝑝𝑝

• If 𝐺𝐺 is an I-map of a strictly positive distribution 𝑝𝑝, then 𝑝𝑝
factorizes with respect to the graph 𝐺𝐺

• Hamersley-Clifford Theorem
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MRF Examples

• Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), express the following as probability 
distributions that factorize over 𝐺𝐺

• Uniform distribution over independent sets

• Uniform distribution over vertex covers

(done on the board)
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BNs vs. MRFs
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Property Bayesian Networks Markov Random Fields

Factorization Conditional Distributions Potential Functions

Distribution Product of Conditional 
Distributions

Normalized Product of
Potentials

Cycles Directed Not Allowed Allowed

Partition Function 1 Potentially NP-hard to Compute

Independence 
Test d-Separation Graph Separation



Moralization

• Every Bayesian network can be converted into an MRF with 
some possible loss of independence information

• Remove the direction of all arrows in the network

• If 𝐴𝐴 and 𝐵𝐵 are parents of 𝐶𝐶 in the Bayesian network, we 
add an edge between 𝐴𝐴 and 𝐵𝐵 in the MRF

• This procedure is called "moralization" because it "marries" 
the parents of every node
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𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐷𝐷
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Moralization

• Every Bayesian network can be converted into an MRF with 
some possible loss of independence information

• Remove the direction of all arrows in the network

• If 𝐴𝐴 and 𝐵𝐵 are parents of 𝐶𝐶 in the Bayesian network, we 
add an edge between 𝐴𝐴 and 𝐵𝐵 in the MRF

• This procedure is called "moralization" because it "marries" 
the parents of every node
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𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐷𝐷 𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐷𝐷



Moralization

• What independence information is lost?
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𝐴𝐴 𝐵𝐵

𝐶𝐶

𝐴𝐴 𝐵𝐵

𝐶𝐶



Factorizations

• Many factorizations over the same graph may represent the 
same joint distribution

• Some are better than others (e.g., they more compactly 
represent the distribution)

• Simply looking at the graph is not enough to understand 
which specific factorization is being assumed
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𝐴𝐴

𝐵𝐵 𝐶𝐶

𝐷𝐷



Factor Graphs

• Factor graphs are used to explicitly represent a given 
factorization over a given graph

• Not a different model, but rather different way to visualize 
an MRF

• Undirected bipartite graph with two types of nodes: 
variable nodes (circles) and factor nodes (squares)

• Factor nodes are connected to the variable nodes on 
which they depend
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Factor Graphs

𝑝𝑝 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶 = 1
𝑍𝑍
𝜓𝜓𝐴𝐴𝐵𝐵(𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵)𝜓𝜓𝐵𝐵𝐶𝐶(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶) 𝜓𝜓𝐴𝐴𝐶𝐶 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐶𝐶
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𝐴𝐴

𝐵𝐵 𝐶𝐶

𝜓𝜓𝐴𝐴𝐶𝐶

𝜓𝜓𝐵𝐵𝐶𝐶

𝜓𝜓𝐴𝐴𝐵𝐵



MRF Examples

• Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), express the following as probability 
distributions that factorize over 𝐺𝐺

• Express the uniform distribution over matchings (i.e., 
subsets of edges such that no two edges in the set have a 
common endpoint) as a factor graph

(done on the board)
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Conditional Random Fields (CRFs)

• Undirected graphical models that represent conditional 
probability distributions 𝑝𝑝 𝑌𝑌 𝑋𝑋)

• Potentials can depend on both 𝑋𝑋 and 𝑌𝑌

𝑝𝑝 𝑌𝑌 𝑋𝑋) =
1

𝑍𝑍(𝑥𝑥)
�
𝑐𝑐∈C

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐)

𝑍𝑍 𝑥𝑥 = �
𝑦𝑦′
�
𝑐𝑐∈C

𝜓𝜓𝑐𝑐(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐′)
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Log-Linear Models

• CRFs often assume that the potentials are log-linear functions

𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 = exp(𝑤𝑤 ⋅ 𝑓𝑓𝑐𝑐(𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐))

𝑓𝑓𝑐𝑐 is referred to as a feature vector and 𝑤𝑤 is some vector of 
feature weights

• The feature weights are typically learned from data

• CRFs don’t require us to model the full joint distribution 
(which may not be possible anyhow)
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Conditional Random Fields (CRFs)

• Binary image segmentation

• Label the pixels of an image as belonging to the 
foreground or background

• +/- correspond to foreground/background 

• Interaction between neighboring pixels in the image 
depends on how similar the pixels are

• Similar pixels should preference having the same spin 
(i.e., being in the same part of the image)
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Conditional Random Fields (CRFs)

• Binary image segmentation

• This can be modeled as a CRF where the image 
information (e.g., pixel colors) is observed, but the 
segmentation is unobserved

• Because the model is conditional, we don’t need to 
describe the joint probability distribution of (natural) 
images and their foreground/background segmentations

• CRFs will be particularly important when we want to learn 
graphical models from observed data
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Low Density Parity Check Codes

• Want to send a message across a noisy channel in which bits 
can be flipped with some probability – use error correcting 
codes

• 𝜓𝜓𝐴𝐴,𝜓𝜓𝐵𝐵,𝜓𝜓𝐶𝐶 are all parity check constraints:  they equal one if 
their input contains an even number of ones and zero 
otherwise

• 𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 = 𝑝𝑝 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 , the probability that the 𝑖𝑖th bit was 
flipped during transmission
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𝜙𝜙1 𝜙𝜙2 𝜙𝜙3 𝜙𝜙4 𝜙𝜙5 𝜙𝜙6



Low Density Parity Check Codes

• The parity check constraints enforce that the 𝑦𝑦’s can only be 
one of a few possible codewords:  000000, 001011, 010101, 
011110, 100110, 101101, 110011, 111000

• Decoding the message that was sent is equivalent to 
computing the most likely codeword under the joint 
probability distribution

28

𝑦𝑦1

𝜓𝜓𝐴𝐴
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6

𝜓𝜓𝐵𝐵 𝜓𝜓𝐶𝐶

𝜙𝜙1 𝜙𝜙2 𝜙𝜙3 𝜙𝜙4 𝜙𝜙5 𝜙𝜙6



Low Density Parity Check Codes

• Most likely codeword is given by MAP inference

arg max
𝑦𝑦

𝑝𝑝 𝑦𝑦|𝑥𝑥

• Do we need to compute the partition function for MAP 
inference?
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𝑦𝑦1
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𝑦𝑦2 𝑦𝑦3 𝑦𝑦4 𝑦𝑦5 𝑦𝑦6

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5 𝑥𝑥6

𝜓𝜓𝐵𝐵 𝜓𝜓𝐶𝐶

𝜙𝜙1 𝜙𝜙2 𝜙𝜙3 𝜙𝜙4 𝜙𝜙5 𝜙𝜙6
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