CS 6347

Lecture 15

Expectation Maximization

Unobserved Variables

- Latent or hidden variables in the model are never observed
- We may or may not be interested in their values, but their existence is crucial to the model
- Some observations in a particular sample may be missing
- Missing information on surveys or medical records (quite common)
- We may need to model how the variables are missing

Hidden Markov Models

- X 's are observed variables, Y 's are latent
- Example: X variables correspond sizes of tree growth rings for one year, the Y variables correspond to average temperature

Missing Data

- Data can be missing from the model in many different ways
- Missing completely at random: the probability that a data item is missing is independent of the observed data and the other missing data
- Missing at random: the probability that a data item is missing can depend on the observed data
- Missing not at random: the probability that a data item is missing can depend on the observed data and the other missing data

Handling Missing Data

- Discard all incomplete observations
- Can introduce bias
- Imputation: actual values are substituted for missing values so that all of the data is fully observed
- E.g., find the most probable assignments for the missing data and substitute them in (not possible if the model is unknown)
- Use the sample mean/mode
- Explicitly model the missing data
- For example, could expand the state space
- The most sensible solution, but may be non-trivial if we don't know how/why the data is missing

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=p\left(m \mid x_{o b s}, x_{m i s}\right) p\left(x_{o b s}, x_{m i s}\right)
$$

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=\underbrace{p\left(m \mid x_{o b s}, x_{m i s}\right)} p\left(x_{o b s}, x_{m i s}\right)
$$

Explicit model of the missing data (missing not at random)

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=\underbrace{p\left(m \mid x_{o b s}\right)} p\left(x_{o b s}, x_{m i s}\right)
$$

Missing at
random

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=\underbrace{p(m)} p\left(x_{o b s}, x_{m i s}\right)
$$

Missing completely at
random

Modelling Missing Data

- Add additional binary variable m_{i} to the model for each possible observed variable x_{i} that indicates whether or not that variable is observed

$$
p\left(x_{o b s}, x_{m i s}, m\right)=\underbrace{p(m) p}\left(x_{o b s}, x_{m i s}\right)
$$

Missing completely at random

How can you model latent
variables in this framework?

Learning with Missing Data

- In order to design learning algorithms for models with missing data, we will make two assumptions
- The data is missing at random
- The model parameters corresponding to the missing data (δ) are separate from the model parameters of the observed data (θ)
- That is

$$
p\left(x_{o b s}, m \mid \theta, \delta\right)=p\left(m \mid x_{o b s}, \delta\right) p\left(x_{o b s} \mid \theta\right)
$$

Learning with Missing Data

$$
p\left(x_{o b s}, m \mid \theta, \delta\right)=p\left(m \mid x_{o b s}, \delta\right) p\left(x_{o b s} \mid \theta\right)
$$

- Under the previous assumptions, the log-likelihood of samples $\left(x^{1}, m^{1}\right), \ldots,\left(x^{K}, m^{K}\right)$ is equal to

$$
l(\theta, \delta)=\sum_{k=1}^{K} \log p\left(m^{k} \mid x_{o b s}^{k}, \delta\right)+\sum_{k=1}^{K} \log \sum_{x_{m i s_{k}}} p\left(x_{o b s_{k}}^{k}, x_{m i s_{k}} \mid \theta\right)
$$

Learning with Missing Data

$$
p\left(x_{o b s}, m \mid \theta, \delta\right)=p\left(m \mid x_{o b s}, \delta\right) p\left(x_{o b s} \mid \theta\right)
$$

- Under the previous assumptions, the log-likelihood of samples $\left(x^{1}, m^{1}\right), \ldots,\left(x^{K}, m^{K}\right)$ is equal to

$$
l(\theta, \delta)=\sum_{k=1}^{K} \log p\left(m^{k} \mid x_{o b s}^{k}, \delta\right)+\sum_{k=1}^{K} \log \sum_{x_{m i s_{k}}} p\left(x_{o b s_{k}}^{k}, x_{m i s_{k}} \mid \theta\right)
$$

Separable in θ and δ, so if we don't care about δ, then we only have to maximize the second term over θ

Learning with Missing Data

$$
l(\theta)=\sum_{k=1}^{K} \log \sum_{x_{m i s_{k}}} p\left(x_{o b s_{k}}^{k}, x_{m i s_{k}} \mid \theta\right)
$$

- This is NOT a concave function of θ
- In the worst case, could have a different local maximum for each possible value of the missing data
- No longer have a closed form solution, even in the case of Bayesian networks

Expectation Maximization

- The expectation-maximization algorithm (EM) is a method to find a local maximum of the log-likelihood with missing data
- Basic idea:

$$
\begin{aligned}
l(\theta) & =\sum_{k=1}^{K} \log \sum_{x_{m i s_{k}}} p\left(x_{o b s_{k}}^{k} x_{m i s_{k}} \mid \theta\right) \\
& =\sum_{k=1}^{K} \log \sum_{x_{m i s_{k}}} q_{k}\left(x_{m i s_{k}}\right) \cdot \frac{p\left(x_{o b s_{k}}^{k}, x_{m i s_{k}} \mid \theta\right)}{q_{k}\left(x_{m i s_{k}}\right)} \\
& \geq \sum_{k=1}^{K} \sum_{x_{m i s_{k}}} q_{k}\left(x_{m i s_{k}}\right) \log \frac{p\left(x_{o b s_{k}}^{k} x_{m i s_{k}} \mid \theta\right)}{q_{k}\left(x_{m i s_{k}}\right)}
\end{aligned}
$$

Expectation Maximization

$$
F(q, \theta) \equiv \sum_{k=1}^{K} \sum_{x_{m i s_{k}}} q_{k}\left(x_{m i s_{k}}\right) \log \frac{p\left(x_{o b s_{k}}^{k}, x_{m i s_{k}} \mid \theta\right)}{q_{k}\left(x_{m i s_{k}}\right)}
$$

- Maximizing F is equivalent to the maximizing the loglikelihood
- Could maximize it using coordinate ascent

$$
\begin{aligned}
& q^{t+1}=\arg \max _{q_{1}, \ldots, q_{K}} F\left(q, \theta^{t}\right) \\
& \theta^{t+1}=\underset{\theta}{\operatorname{argmax}} F\left(q^{t+1}, \theta\right)
\end{aligned}
$$

Expectation Maximization

$$
\sum_{x_{m i s_{k}}} q_{k}\left(x_{m i s_{k}}\right) \log \frac{p\left(x_{o b s_{k}}^{k}, x_{m i s_{k}} \mid \theta\right)}{q_{k}\left(x_{m i s_{k}}\right)}
$$

- This is just $-d\left(q_{k} \| p\left(x_{o b s_{k}}^{k}, \mid \theta\right)\right)$
- Maximized when $q_{k}\left(x_{m i s_{k}}\right)=p\left(x_{m i s_{k}} \mid x_{o b s_{k}}^{k}, \theta\right)$
- Can reformulate the EM algorithm as

$$
\theta^{t+1}=\underset{\theta}{\operatorname{argmax}} \sum_{k=1}^{K} \sum_{x_{m i s_{k}}} p\left(x_{m i s_{k}} \mid x_{o b s_{k}}^{k}, \theta^{t}\right) \log p\left(x_{o b s_{k}}^{k} x_{m i s_{k}} \mid \theta\right)
$$

An Example: Bayesian Networks

- Recall that MLE for Bayesian networks without latent variables yielded

$$
\theta_{x_{i} \mid x_{\text {parents }(i)}}=\frac{\mathrm{N}_{x_{i}, x_{\text {parents }(i)}}}{\sum_{x_{i}^{\prime}} \mathrm{N}_{x_{i}^{\prime}, x_{\text {parents }(i)}}}
$$

- Let's suppose that we are given observations from a Bayesian network in which one of the variables is hidden
- What do the iterations of the EM algorithm look like?

> (on board)

