

CS 6347

Lecture 5

Exact Inference in MRFs

Inference

$$
p\left(x_{A}, x_{B}, x_{C}, x_{D}\right)=\frac{1}{Z} \psi_{A B}\left(x_{A}, x_{B}\right) \psi_{B C}\left(x_{B}, x_{C}\right) \psi_{C D}\left(x_{C}, x_{D}\right)
$$

$$
Z=\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right)
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \sum_{x_{C}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \sum_{x_{D}^{\prime}} \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \sum_{x_{C}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \sum_{x_{D}^{\prime}} \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \sum_{x_{C}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \phi_{C}\left(x_{C}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \sum_{x_{C}^{\prime}} \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \phi_{C}\left(x_{C}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \phi_{B}\left(x_{B}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \phi_{B}\left(x_{B}^{\prime}\right)
\end{aligned}
$$

Inference

$$
\begin{aligned}
Z & =\sum_{x_{A}^{\prime}, x_{B}^{\prime}, x_{C}^{\prime}, x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \sum_{x_{B}^{\prime}} \sum_{x_{C}^{\prime}} \sum_{x_{D}^{\prime}} \psi_{A B}\left(x_{A}^{\prime}, x_{B}^{\prime}\right) \psi_{B C}\left(x_{B}^{\prime}, x_{C}^{\prime}\right) \psi_{C D}\left(x_{C}^{\prime}, x_{D}^{\prime}\right) \\
& =\sum_{x_{A}^{\prime}} \phi_{A}\left(x_{A}^{\prime}\right)
\end{aligned}
$$

Variable Elimination

- Choose an ordering of the random variables
- Sum the joint distribution over the variables one at a time in the specified order exploiting the factorization where possible
- Each time a variable is eliminated, it creates a new potential that is multiplied back in after removing the sum that generated this potential

Variable Elimination

- What is the cost of the optimal variable elimination on the chain?

Variable Elimination

- What is the cost of the optimal variable elimination on the chain?

$$
\text { length of the chain } \times(\text { size of state space })^{2}
$$

Another Example

Elimination order: C, B, D, F, E, A
(worked out on the board)

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Another Example

Elimination order: C, B, D, F, E, A

Treewidth

- The treewidth of a graph is equal to the size of the largest clique created in any optimal elimination ordering
- Tree width of a tree: ?

Treewidth

- The treewidth of a graph is equal to the size of the largest clique created in any optimal elimination ordering
- Tree width of a tree: 1 (as long as it has at least one edge)
- The complexity of variable elimination is upper bounded by $\mathrm{n} \cdot(\text { size of the state space })^{\text {treewidth }+1}$

What is the Treewidth of this Graph?

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

What is the Treewidth of this Graph?

Elimination order: D, C, F, E, B, A

Largest clique created had size two
(this is the best that we can do)

Elimination Orderings

- Finding the optimal elimination ordering is NP-hard!
- Heuristic methods are often used in practice
- Min-degree: the cost of a vertex is the number of neighbors it has in the current graph
- Min-fill: the cost of a vertex is the number of new edges that need to be added to the graph due to its elimination

Belief Propagation

- Efficient method for inference on a tree
- Represent the variable elimination process as a collection of messages passed between nodes in the tree
- The messages keep track of the potential functions produced throughout the elimination process
- Optimal elimination order on a tree always eliminates leaves of the current tree (i.e., always eliminate degree 1 vertices)

Belief Propagation

- $p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)$

$$
m_{i \rightarrow j}\left(x_{j}\right)=\sum_{x_{i}} \phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(i) \backslash j} m_{k \rightarrow \mathrm{i}}\left(x_{i}\right)
$$

where $N(i)$ is the set of neighbors of node i in the graph

- Messages are passed in two phases: from the leaves up to the root and then from the root down to the leaves

Belief Propagation

- As an added bonus, BP allows you to efficiently compute the marginal probability over each single variable as well as the partition function
- Multiply the singleton potentials with all of the incoming messages
- Computing the normalization constant for this function gives the partition function of the model
- A similar strategy when the factor graph is a tree
- Two types of messages: factor-to-variable and variable-tofactor

Belief Propagation

- What is the complexity of belief propagation on a tree with state space D ?

Belief Propagation

- What is the complexity of belief propagation on a tree with state space D ?

$$
O\left(n|D|^{2}\right)
$$

- What if we want to compute the MAP assignment instead of the partition function?

MAP Inference

- Compute the most likely assignment under the (conditional) joint distribution

$$
x^{*}=\arg \max _{x} p(x)
$$

- Can encode 3-SAT, maximum independent set problem, etc. as a MAP inference problem

Max-Product (for pairwise MRFs)

- $p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{i \in V} \phi_{i}\left(x_{i}\right) \prod_{(i, j) \in E} \psi_{i j}\left(x_{i}, x_{j}\right)$

$$
m_{i \rightarrow j}\left(x_{j}\right)=\max _{x_{i}}\left[\phi_{i}\left(x_{i}\right) \psi_{i j}\left(x_{i}, x_{j}\right) \prod_{k \in N(i) \backslash j} m_{k \rightarrow \mathrm{i}}\left(x_{i}\right)\right]
$$

- Guaranteed to produce the correct answer on a tree
- Typical applications do not require computing Z

Max-Product

- To construct the maximizing assignment, we look at the maxmarginal produced by the algorithm

$$
\begin{gathered}
\mu_{i}\left(x_{i}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \prod_{k \in \mathrm{~N}(i)} m_{k \rightarrow i}\left(x_{i}\right) \\
\mu_{i j}\left(x_{i}, x_{j}\right)=\frac{1}{Z} \phi_{i}\left(x_{i}\right) \phi_{j}\left(x_{j}\right) \psi_{i j}\left(x_{i}, x_{j}\right)\left(\prod_{k \in \mathrm{~N}(i) \backslash j} m_{k \rightarrow i}\left(x_{i}\right)\right)\left(\prod_{k \in \mathrm{~N}(j) \backslash i} m_{k \rightarrow j}\left(x_{j}\right)\right)
\end{gathered}
$$

- Again, on a tree,

$$
\mu_{i}\left(x_{i}\right)=\max _{x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}} p\left(x_{1}, \ldots, x_{n}\right)
$$

