

CS 6347

Lecture 10

MCMC Sampling Methods

Last Time

- Sampling from discrete univariate distributions
 - Rejection sampling
 - To sample p(y), draw samples from p(x', y') and reject those with $y \neq y'$
 - Importance sampling
 - Introduce a proposal distribution q(x) whose support contains the support of p(x,y)
 - Sample from q and reweight the samples to generate samples from p

Today

- We saw how to sample from Bayesian networks, but how do we sample from MRFs?
 - Can't even compute $p(x) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)$ without knowing the partition function
 - No well-defined ordering in the model
- To sample from MRFs, we will need fancier forms of sampling
 - So-called Markov Chain Monte Carlo (MCMC) methods

• A Markov chain is a sequence of random variables $X_1, ..., X_n \in S$ such that

$$p(x_{n+1}|x_1,...,x_n) = p(x_{n+1}|x_n)$$

- The set S is called the state space, and $p(X_{n+1} = b | X_n = a)$ is the probability of transitioning from state a to state b at step n
- As a Bayesian network or a MRF, the joint distribution over the first n steps factorizes over a chain

- When the probability of transitioning between two states does not depend on time, we call it a time homogeneous Markov chain
 - Represent it by a $|S| \times |S|$ transition matrix P

•
$$P_{ij} = p(X_{n+1} = j | X_n = i)$$

- P is a **stochastic** matrix (all rows sum to one)
- Draw it as a directed graph over the state space with an arrow from $a \in S$ to $b \in S$ labelled by the probability of transitioning from a to b

- Given some initial distribution over states $p(x_1)$
 - Represent $p(x_1)$ as a length |S| vector, π_1
 - The probability distribution after n steps is given by

$$\pi_n = \pi_1 P^n$$

- Typically interested in the long term (i.e., what is the state of the system when n is large)
- In particular, we are interested in steady-state distributions μ such that $\mu = \mu P$
 - A given chain may or may not converge to a steady state

- Theorem: every irreducible, aperiodic Markov chain converges to a unique steady state distribution independent of the initial distribution
 - Irreducible: the directed graph of transitions is strongly connected (i.e., there is a directed path between every pair of nodes)
 - Aperiodic: $p(X_n = i | X_1 = i) > 0$ for all large enough n
- If the state graph is strongly connected and there is a non-zero probability of remaining in any state, then the chain is irreducible and aperiodic

Detailed Balance

• Lemma: a vector of probabilities μ is a stationary distribution of the MC with transition matrix P if for all i and j,

$$\mu_i P_{ij} = \mu_j P_{ji}$$

Proof:

$$(\mu P)_j = \sum_i \mu_i P_{ij} = \sum_i \mu_j P_{ji} = \mu_j$$

So,
$$\mu P = \mu$$

MCMC Sampling

- Markov chain Monte Carlo sampling
 - Construct a Markov chain where the stationary distribution is the distribution we want to sample from
 - Use the Markov chain to generate samples from the distribution
 - Combine with the same Monte Carlo estimation strategy as before
 - Will let us sample conditional distributions easily as well!

- Choose an initial assignment x^0
- Fix an ordering of the variables (any order is fine)
- Draw an index juniformly at random (could also do round robin)
 - Draw a sample z from $p(x_j|x_1^{t+1}, ..., x_{j-1}^{t+1}, x_{j+1}^t, ..., x_{|V|}^t)$
 - Set $x_i^{t+1} = z$
 - For all $i \neq j$, set $x_i^{t+1} = x_i^t$
- Set $t \leftarrow t + 1$ and repeat

- If $p(x) = \frac{1}{Z} \prod_C \psi_C(x_C)$, we can use the conditional independence assumptions to sample from $p(x_i|x_{N(i)})$
 - This lets us exploit the graph structure for sampling
 - For Bayesian networks, reduces to $p(X_j|x_{MB(j)})$ where MB(j) is j's Markov blanket (j's parents, children, and its children's parents)

.01 .99 .25

	Α	P	$^{\prime}(A)$						В		P(B)	
	0		.3						0		.4	
	1		.7		\triangle			в)	1		.6	
					\prec		人					
\boldsymbol{A}	В	С	P(C	A, B)	*				_			l
0	0	0		1	(c)		С	D	P(I)	D C)	ı
0		1	(<u> </u>	•			0	0		.3	ı

Order: A, B, C, D, A, B, C, D, ...

A	В	С	D
0	0	0	0

(1) Sample from
$$p(x_A|x_B=0,x_C=0,x_D=0)$$

Using Bayes rule, $p(x_A|x_B=0,x_C=0) \propto p(x_A)p(x_C=0|x_A,x_B=0)$
 $p(x_A=0|x_B=0,x_C=0) \propto .3 \cdot .1 = .03$
 $p(x_A=1|x_B=0,x_C=0) \propto .7 \cdot .01 = .007$

.25

0 .3 1 .7 A B C P(C A,B)	P(B)
	.4
	.6
$A \cap B \cap C \cap P(C \mid A \mid B)$	
$A \mid B \mid C \mid P(C \mid A \mid B)$	
	1.00
0 0 0 .1 (C) C D P(D	(C)
0 0 1 .9	3
0 1 0 .2	7
0 1 1 .8	ŀ
1 0 0 .01 (D) 1 1 .6	5

Order: A, B, C, D, A, B, C, D, ...

А	В	С	D
0	0	0	0
0			

(1) Sample from $p(x_A|x_B=0,x_C=0,x_D=0)$ Using Bayes rule, $p(x_A|x_B=0,x_C=0) \propto p(x_A)p(x_C=0|x_A,x_B=0)$ $p(x_A=0|x_B=0,x_C=0) \propto .3 \cdot .1 \rightarrow .811$ $p(x_A=1|x_B=0,x_C=0) \propto .7 \cdot .01 \rightarrow .189$

Random number: 0.32775

.01 .99 .25

	Α	P	$^{\prime}(A)$					В		P(B))
	0		.3					0		.4	
	1		.7		A)	(в)	1		.6	
						>					
A	В	С	P(C A)	A,B)	*	~	0	-	D.	D (0)	l
0	0	0	.1	L	((C)	С	D	<i>P</i> (D C)	
0	0	1	.9)		~	0	0		.3	
0	1	0	.2	2		ı	0	1		.7	
						┺		_			

Order: A, B, C, D, A, B, C, D, ...

А	В	С	D
0	0	0	0
0			

(1) Sample from
$$p(x_B|x_A=0,x_C=0,x_D=0)$$

Using Bayes rule, $p(x_B|x_A=0,x_C=0) \propto p(x_B)p(x_C=0|x_A=0,x_B)$
 $p(x_B=0|x_A=0,x_C=0) \propto .4 \cdot .1 = .04$
 $p(x_B=1|x_A=0,x_C=0) \propto .6 \cdot .2 = .12$

.99 .25

	Α	P	$\mathcal{C}(A)$				В		P(B)	
	0		.3				0		.4	
	1		.7	A)	(в)	1		.6	
			(>					
A	B	С	P(C A,B)	Y	~			D (1		
0	0	0	.1	(C)	С	D	P(I	O(C)	
0	0	1	.9		~	0	0		.3	
0	1	0	.2			0	1		.7	
0	1	1	.8		*	1	0		4	
1	0	0	.01		(a)	1	1		.6	

Order: A, B, C, D, A, B, C, D, ...

А	В	С	D
0	0	0	0
0	1		

(1) Sample from $p(x_B|x_A=0,x_C=0,x_D=0)$ Using Bayes rule, $p(x_B|x_A=0,x_C=0) \propto p(x_B)p(x_C=0|x_A=0,x_B)$ $p(x_B=0|x_A=0,x_C=0) \propto .4 \cdot .1 \rightarrow .25$ $p(x_B=1|x_A=0,x_C=0) \propto .6 \cdot .2 \rightarrow .75$

Random number: 0.8378

.75

	A 0 1	P	.3 .7	\bigcap	(\widehat{B}	0 1		P(B) .4 .6
A	В	С	P(C A,B)			ر"			
0	0	0	.1	(c)	С	D	P(D)	(C)
0	0	1	.9	$\overline{}$	/	0	0	.3	
0	1	0	.2			0	1	.7	
0	1	1	.8			1	0	.4	
1	0	0	.01	(D) [1	1	.6	
1	0	1	.99		/ '				

Order: A, B, C, D, A, B, C, D, ...

А	В	С	D
0	0	0	0
0	1		

(1) Sample from $p(x_C|x_A=0,x_B=1,x_D=0)$ Using Bayes rule, $p(x_C|x_A=0,x_B=1,x_D=0) \propto p(x_C|x_A=0,x_B=1)p(x_D=0|x_C)$ $p(x_C=0|x_A=0,x_B=1,x_D=0) \propto .2 \cdot .3 = .06$ $p(x_C=1|x_A=0,x_B=1,x_D=0) \propto .8 \cdot .4 = .32$

.25

	A	P	C(A)				В		P(B)
	0		.3				0		.4
	1		.7	A)	(в)	1		.6
					>				
A	В	С	P(C A,B)	Y	~	0	-	D.	
0	0	0	.1	(C)	С	D	P(x)	D C)
0	0	1	.9			0	0		.3
0	1	0	.2			0	1		.7
0	1	1	.8	1 /	*	1	0		.4
1	0	0	.01		D)	1	1		.6

Order: A, B, C, D, A, B, C, D, ...

A	В	С	D
0	0	0	0
0	1	1	

(1) Sample from $p(x_C|x_A=0,x_B=1,x_D=0)$ Using Bayes rule, $p(x_C|x_A=0,x_B=1,x_D=0) \propto p(x_C|x_A=0,x_B=1)p(x_D=0|x_C)$ $p(x_C=0|x_A=0,x_B=1,x_D=0) \propto .2 \cdot .3 \rightarrow .158$ $p(x_C=1|x_A=0,x_B=1,x_D=0) \propto .8 \cdot .4 \rightarrow .842$

Random number: 0.73907

		A	P	$^{\prime}(A)$						В		
		0		.3						0		
		1		.7		A		(в)	1		
					_	\prec						
4	\boldsymbol{A}	В	С	P(C A)	A,B)		*	*				
(0	0	0	.1	L		(C)	С	D	P(D
_						1			Λ .	Λ		7

Order: A, B, C, D, A, B, C, D, ...

А	В	С	D
0	0	0	0
0	1	1	

(1) Sample from $p(x_D | x_C = 1)$ $p(x_D = 0 | x_C = 1) = .4$ $p(x_D = 1 | x_C = 1) = .6$

.8

.01

.99 .25

0

0

P(B)
.4

.6

|C)

.4

.6

1

1

	Α	P	$\mathcal{C}(A)$				В		P(B)	
	0		.3				0		.4	
	1		.7	A)		в)	1		.6	
					>					
A	В	С	P(C A,B)		•	9		D (1	D.I. (2)	
0	0	0	.1	(C)	С	D	P(I	D C)	
0	0	1	.9			0	0	ı	.3	
0	1	0	.2			0	1		.7	
0	1	1	.8			1	0		.4	
1	0	0	.01	(D)	1	1	1		.6	

Order: A, B, C, D, A, B, C, D, ...

А	В	С	D	
0	0	0	0	
0	1	1	0	

(1) Sample from $p(x_D | x_C = 1)$ $p(x_D = 0 | x_C = 1) = .4$ $p(x_D = 1 | x_C = 1) = .6$

.99 .25

0

Random number: 0.03192

.25 .75

	A 0 1	_	.3 .7	A		В	0 1	P(B .4 .6	
A	В	С	P(C A,B)	Y	┥,			D (D 0)	1
0	0	0	.1	(C)	С	D	P(D C)	
0	0	1	.9	$\overline{}$	/	0	0	.3	
0	1	0	.2			0	1	.7	
0	1	1	.8	<u> </u>		1	0	.4	
1	0	0	.01	(D) [1	1	.6	
1	0	1	.99		ノ゛				-

Order: A, B, C, D, A, B, C, D, ...

A	В	С	D
0	0	0	0
0	1	1	0

(2) Repeat the same process to generate the next sample

- Gibbs sampling forms a Markov chain
- The states of the chain are the assignments and the probability of transitioning from an assignment y to an assignment z (in the order 1, ..., n)

$$p(z_1|y_{V\setminus\{1\}})p(z_2|y_{V\setminus\{1,2\}},z_1)...p(z_n|z_{V\setminus\{n\}})$$

- If there are no zero probability states, then the chain is irreducible and aperiodic (hence it converges)
- The stationary distribution is p(x) proof?

- Recall that it takes time to reach the steady state distribution from an arbitrary starting distribution
- The mixing time is the number of samples that it takes before the approximate distribution is close to the steady state distribution
 - In practice, this can take 1000s of iterations (or more)
 - We typically ignore the samples for a set amount of time called the burn in phase and then begin producing samples

- We can use Gibbs sampling for MRFs as well!
 - We don't need to compute the partition function to use it (why not?)
 - Many "real" MRFs will have lots of zero probability assignments
 - If you don't start with a non-zero assignment, the algorithm can get stuck (changing a single variable may not allow you to escape)
 - Might not be possible to go between all possible non-zero assignments by only flipping one variable at a time

- The idea of choosing a transition probability between new assignments and the current assignments can be generalized beyond the transition probabilities used in Gibbs sampling
- Pick some transition function q(x'|x) that depends on the current state x
 - We would ideally want the probability of transitioning between any two non-zero probability states to be positive

- Choose an initial assignment x
- Sample an assignment z from the proposal distribution q(x'|x)
- Sample r uniformly from [0,1]
- If $r < \min\left\{1, \frac{p(z)q(x|z)}{p(x)q(z|x)}\right\}$
 - Set *x* to *z*
- Else
 - Leave x unchanged

- Choose an initial assignment x
- Sample an assignment z from the proposal distribution q(x'|x)
- Sample r uniformly from [0,1]

• If
$$r < \min\left\{1, \frac{p(z)q(x|z)}{p(x)q(z|x)}\right\}$$

- Set *x* to *z*
- Else
 - Leave x unchanged

$$\frac{p(z)}{q(z|x)}$$
 and $\frac{p(x)}{q(x|z)}$ are like importance weights

The acceptance probability is then a function of the ratio of the importance of z and the importance of x

- The Metropolis-Hastings algorithm produces a Markov chain that converges to p(x) from any initial distribution (assuming that it is irreducible and aperiodic)
- What are some choices for q(x'|x)?
 - Use an importance sampling distribution
 - Use a uniform distribution (like a random walk)
- Gibbs sampling is a special case of this algorithm where the proposal distribution corresponds to the transition matrix