

CS 6347

Lecture 12

Maximum Likelihood Learning

Maximum Likelihood Estimation

- Given samples $x^1, ..., x^M$ from some unknown distribution with parameters θ ...
 - The log-likelihood of the evidence is defined to be

$$\log l(\theta) = \sum_{m} \log p(x|\theta)$$

• Goal: maximize the log-likelihood

- Given samples $x^1, ..., x^M$ from some unknown Bayesian network that factors over the directed acyclic graph *G*
 - The parameters of a Bayesian model are simply the conditional probabilities that define the factorization
 - For each $i \in G$ we need to learn $p(x_i | x_{parents(i)})$, create a variable $\theta_{x_i | x_{parents(i)}}$

$$\log l(\theta) = \sum_{m} \sum_{i \in V} \log \theta_{x_i^m | x_{parents(i)}^m}$$

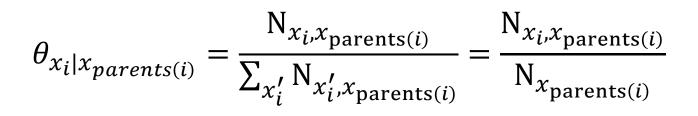
$$\log l(\theta) = \sum_{m} \sum_{i \in V} \log \theta_{x_i^m | x_{parents(i)}^m}$$
$$= \sum_{i \in V} \sum_{m} \log \theta_{x_i^m | x_{parents(i)}^m}$$
$$= \sum_{i \in V} \sum_{x_{parents(i)}} \sum_{x_i} N_{x_i, x_{parents(i)}} \log \theta_{x_i | x_{parents(i)}}$$

$$\log l(\theta) = \sum_{m} \sum_{i \in V} \log \theta_{x_i^m | x_{parents(i)}^m}$$
$$= \sum_{i \in V} \sum_{m} \log \theta_{x_i^m | x_{parents(i)}^m}$$
$$= \sum_{i \in V} \sum_{x_{parents(i)}} \sum_{x_i} N_{x_i, x_{parents(i)}} \log \theta_{x_i | x_{parents(i)}}$$

 $N_{x_i,x_{parents(i)}}$ is the number of times $(x_i, x_{parents(i)})$ was observed in the samples

$$\log l(\theta) = \sum_{m} \sum_{i \in V} \log \theta_{x_{i}^{m} | x_{parents(i)}^{m}}$$
$$= \sum_{i \in V} \sum_{m} \log \theta_{x_{i}^{m} | x_{parents(i)}^{m}}$$
$$= \sum_{i \in V} \sum_{x_{parents(i)}} \sum_{x_{i}} N_{x_{i}, x_{parents(i)}} \log \theta_{x_{i} | x_{parents(i)}}$$

Fix $x_{parents(i)}$ solve for $\theta_{x_i|x_{parents(i)}}$ for all x_i (on the board)



- This is just the empirical conditional probability distribution
 - Worked out nicely because of the factorization of the joint distribution
- Similar to the coin flips result from last time

MLE for MRFs

- Let's compute the MLE for MRFs that factor over the graph G as $p(x|\theta) = \frac{1}{Z(\theta)} \prod_{C} \psi_{C}(x_{C}|\theta)$
- The parameters θ control the allowable potential functions
- Again, suppose we have samples x¹, ..., x^M from some unknown MRF of this form

$$\log l(\theta) = \left[\sum_{m} \sum_{C} \log \psi_{C}(x_{C}^{m}|\theta)\right] - M \log Z(\theta)$$

MLE for MRFs

- Let's compute the MLE for MRFs that factor over the graph G as $p(x|\theta) = \frac{1}{Z(\theta)} \prod_{C} \psi_{C}(x_{C}|\theta)$
- The parameters θ control the allowable potential functions
- Again, suppose we have samples x¹, ..., x^M from some unknown MRF of this form

$$\log l(\theta) = \left[\sum_{m} \sum_{C} \log \psi_{C}(x_{C}^{m} | \theta)\right] - M \log Z(\theta)$$

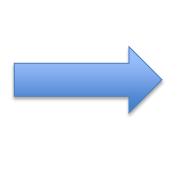
 $Z(\theta)$ couples all of the potential functions together!

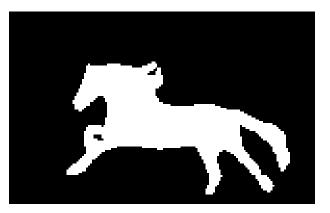
Even computing $Z(\theta)$ by itself was a challenging task...

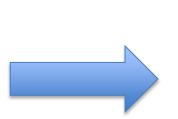
Conditional Random Fields

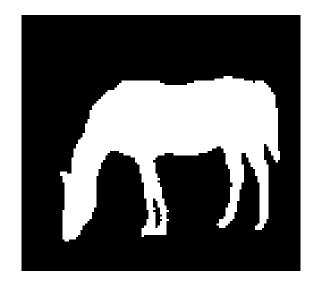
- Learning MRFs is quite restrictive
 - Most "real" problems are really conditional models
- Example: image segmentation
 - Represent a segmentation problem as a MRF over a two dimensional grid
 - Each x_i is an binary variable indicating whether or not the pixel is in the foreground or the background
 - How do we incorporate pixel information?
 - The potentials over the edge (i, j) of the MRF should depend on x_i, x_j as well as the pixel information at nodes i and j

Image Segmentation









- The pixel information is called a feature of the model
 - Features will consist of more than just a scalar value (i.e., pixels, at the very least, are vectors of RGBA values)
- Vector of features y (e.g., one vector of features y_i for each $i \in V$)
 - We think of the joint probability distribution as a conditional distribution $p(x|y, \theta)$
- This makes MLE even harder
 - Samples are pairs $(x^1, y^1), \dots, (x^M, y^M)$
 - The feature vectors can be different for each sample: need to compute $Z(\theta, y^m)$ in the log-likelihood!

Log-Linear Models

- MLE seems daunting for MRFs and CRFs
 - Need a nice way to parameterize the model and to deal with features
- We often assume that the models are log-linear in the parameters
 - Many of the models that we have seen so far can easily be expressed as log-linear models of the parameters
 - Feature vectors should also be incorporated in a log-linear way

where

• The potential on the clique *C* should be a log-linear function of the parameters

$$\psi_C(x_C|y,\theta) = \exp(\langle \theta, f_C(x_C,y) \rangle)$$

$$\langle \theta, f_C(x_C, y) \rangle = \sum_k \theta_k \cdot f_C(x_C, y)_k$$

• Here, f is a feature map that takes the input variables and returns a vector the same size as θ

Log-Linear MRFs

• Over complete representation: one parameter for each clique C and choice of x_{C}

$$p(x|\theta) = \frac{1}{Z} \prod_{C} \exp(\theta_{C}(x_{C}))$$

- $f_C(x_C)$ is a 0-1 vector that is indexed by C and x_C whose only nonzero component corresponds to $\theta_C(x_C)$
- One parameter per clique

$$p(x|\theta) = \frac{1}{Z} \prod_{C} \exp(\theta_{C} f_{C}(x_{C}))$$

• $f_C(x_C)$ is a vector that is indexed ONLY by C whose only non-zero component corresponds to θ_C

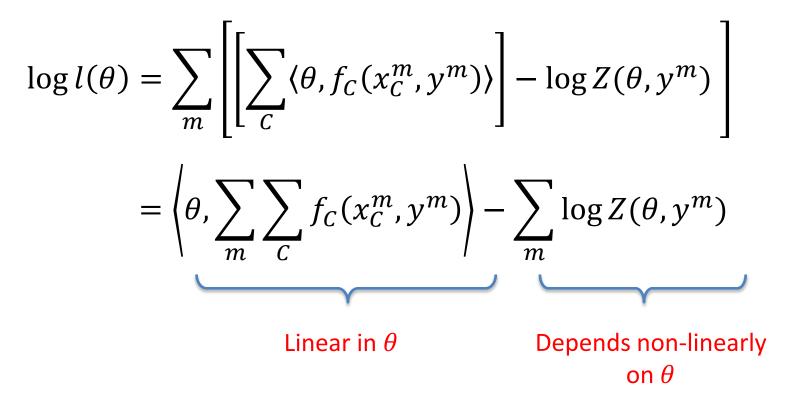
MLE for Log-Linear Models

$$p(x|y,\theta) = \frac{1}{Z(\theta,y)} \prod_{C} \exp(\langle \theta, f_{C}(x_{C},y) \rangle)$$

$$\log l(\theta) = \sum_{m} \left[\left[\sum_{C} \langle \theta, f_{C}(x_{C}^{m}, y^{m}) \rangle \right] - \log Z(\theta, y^{m}) \right]$$
$$= \left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m}, y^{m}) \right\rangle - \sum_{m} \log Z(\theta, y^{m})$$

MLE for Log-Linear Models

$$p(x|y,\theta) = \frac{1}{Z(\theta, y)} \prod_{C} \exp(\langle \theta, f_{C}(x_{C}, y) \rangle)$$



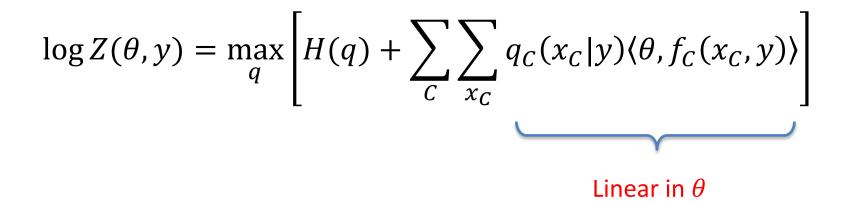
Concavity of MLE

We will show that $\log Z(\theta, y)$ is a convex function of θ ...

Fix a distribution $q(\mathbf{x}|\mathbf{y})$

$$D(q||p) = \sum_{x} q(x|y) \log \frac{q(x|y)}{p(x|y,\theta)}$$

= $\sum_{x} q(x|y) \log q(x|y) - \sum_{x} q(x|y) \log p(x|y,\theta)$
= $-H(q) - \sum_{x} q(x|y) \log p(x|y,\theta)$
= $-H(q) + \log Z(\theta, y) - \sum_{x} \sum_{c} q(x|y) \langle \theta, f_{c}(x_{c}, y) \rangle$
= $-H(q) + \log Z(\theta, y) - \sum_{c} \sum_{x_{c}} q_{c}(x_{c}|y) \langle \theta, f_{c}(x_{c}, y) \rangle$

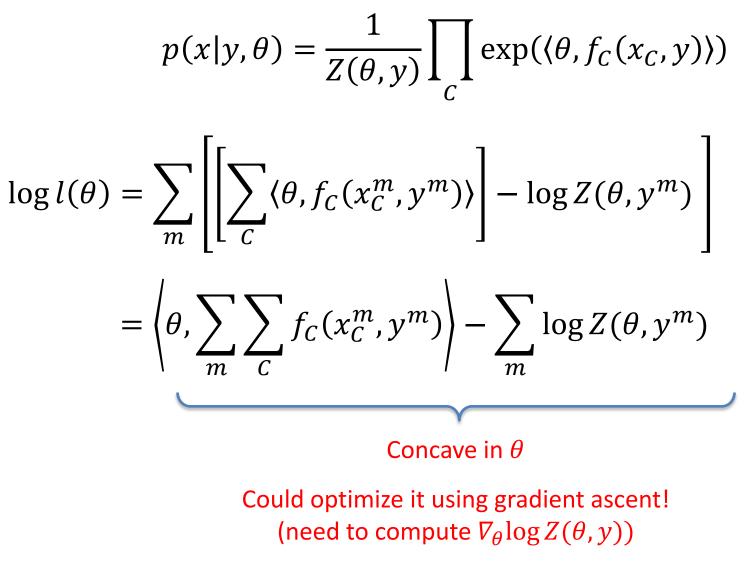


- If a function g(x, y) is convex in x for each y, then max g(x, y) is convex in x
 - As a result, log Z(θ, y) is a convex function of θ for a fixed value of y

MLE for Log-Linear Models

$$p(x|y,\theta) = \frac{1}{Z(\theta,y)} \prod_{C} \exp(\langle \theta, f_{C}(x_{C},y) \rangle)$$
$$\log l(\theta) = \sum_{m} \left[\left[\sum_{C} \langle \theta, f_{C}(x_{C}^{m},y^{m}) \rangle \right] - \log Z(\theta,y^{m}) \right]$$
$$= \left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m},y^{m}) \right\rangle - \sum_{m} \log Z(\theta,y^{m})$$
$$\underbrace{\text{Linear in } \theta} \qquad \text{Convex in } \theta$$

MLE for Log-Linear Models



• What is the gradient of the log-likelihood with respect to θ ?

 $\nabla_{\theta} \log Z(\theta, y^m) = ?$

(worked out on board)

• What is the gradient of the log-likelihood with respect to θ ?

$$\nabla_{\theta} \log Z(\theta, y^m) = \sum_{C} \sum_{m} \sum_{x_C} p_C(x_C | y^m, \theta) f_C(x_C, y^m)$$

This is the expected value of the feature maps under the joint distribution

MLE via Gradient Ascent

• What is the gradient of the log-likelihood with respect to θ ?

$$\nabla_{\theta} \log l(\theta) = \sum_{C} \sum_{m} \left(f_{C}(x_{C}^{m}, y^{m}) - \sum_{x_{C}} p_{C}(x_{C} | y^{m}, \theta) f_{C}(x_{C}, y^{m}) \right)$$

- To compute/approximate this quantity, we only need to compute/approximate the marginal distributions $p_C(x_C|y,\theta)$
- This requires performing marginal inference on a different model at each step of gradient ascent!

Moment Matching

- Let $f(x^{m}, y^{m}) = \sum_{C} f_{C}(x_{C}^{m}, y^{m})$
- Setting the gradient with respect to $\boldsymbol{\theta}$ equal to zero and solving gives

$$\sum_{m} f(x^{m}, y^{m}) = \sum_{m} \sum_{x} p(x|y^{m}, \theta) f(x, y^{m})$$

 This condition is called moment matching and when the model is an MRF instead of a CRF this reduces to

$$\frac{1}{M}\sum_{m}f(x^{m}) = \sum_{x}p(x|\theta)f(x)$$

Moment Matching

• As an example, consider a log-linear MRF

$$p(x) = \frac{1}{Z} \prod_{C} \exp(\theta_{C}(x_{C}))$$

- That is, f_C(x_C) is a vector that is indexed by C and x_C whose only non-zero component corresponds to θ_C(x_C)
- The moment matching condition becomes

$$\frac{1}{M} \sum_{m} \mathbf{1}_{x_{C} = x_{C}^{m}} = p_{C}(x_{C}|\theta), \quad \text{for all } C, x_{C}$$

- Recall that we can also incorporate prior information about the parameters into the MLE problem
 - This involved solving an augmented MLE (called MAP estimation)

$$\prod_{m} p(x^{m}|\theta)p(\theta)$$

• What types of priors should we choose for the parameters?

• Dirichlet distribution over x_1, \ldots, x_K such that $x_1, \ldots, x_K \ge 0$ and $\sum_i x_i = 1$

$$f(x_1, \dots, x_K; \alpha_1, \dots, \alpha_K) \propto \prod_i x_i^{\alpha_i - 1}$$

• The Dirichlet distribution is a distribution over probability distributions over *K* elements (generalizes the Beta distribution)

- Recall that we can also incorporate prior information about the parameters into the MLE problem
 - This involved solving an augmented MLE

$$\left[\prod_{m} p(x^{m}|\theta)\right] p(\theta)$$

- What types of priors should we choose for the parameters?
 - Gaussian prior: $p(\theta) \propto \exp(-\frac{1}{2}(\theta \mu)^T \Sigma^{-1}(\theta \mu)^T)$
 - Uniform over [0,1]

- Recall that we can also incorporate prior information about the parameters into the MLE problem
 - This involved solving an augmented MLE

$$\left[\prod_{m} p(x^{m}|\theta)\right] \exp\left(-\frac{1}{2}\theta^{T}D\theta\right)$$

Zero-mean Gaussian prior with a diagonal covariance matrix all of whose entries are equal to λ

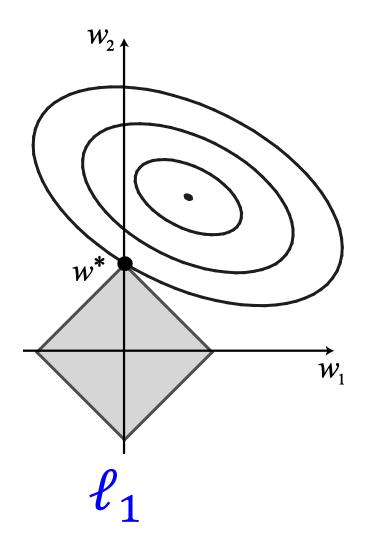
- What types of priors should we choose for the parameters?
 - Gaussian prior: $p(\theta) \propto \exp(-\frac{1}{2}(\theta \mu)^T \Sigma^{-1}(\theta \mu)^T)$
 - Uniform over [0,1]

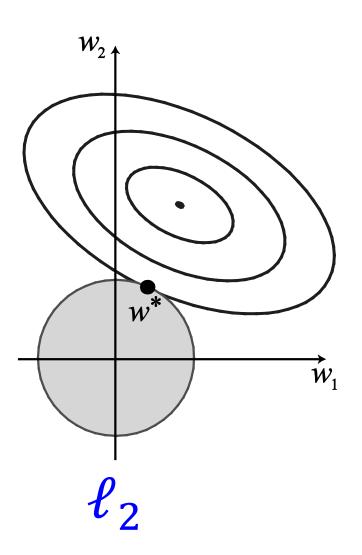
- Using the previous Gaussian prior yields the following logoptimization problem

$$\log\left(\left[\prod_{m} p(x^{m}|\theta)\right] \exp\left(-\frac{1}{2}\theta^{T}D\theta\right)\right) = \left[\sum_{m} \log p(x^{m}|\theta)\right] - \frac{\lambda}{2}\sum_{k} \theta_{k}^{2}$$
$$= \left[\sum_{m} \log p(x^{m}|\theta)\right] - \frac{\lambda}{2}||\theta||_{2}^{2}$$

Known as ℓ_2 regularization

Regularization





Duality and MLE

$$\log Z(\theta, y) = \max_{q} \left[H(q) + \sum_{C} \sum_{x_{C}} q_{C}(x_{C}|y) \langle \theta, f_{C}(x_{C}, y) \rangle \right]$$
$$\log l(\theta) = \left\langle \theta, \sum_{m} \sum_{C} f_{C}(x_{C}^{m}, y^{m}) \right\rangle - \sum_{m} \log Z(\theta, y^{m})$$

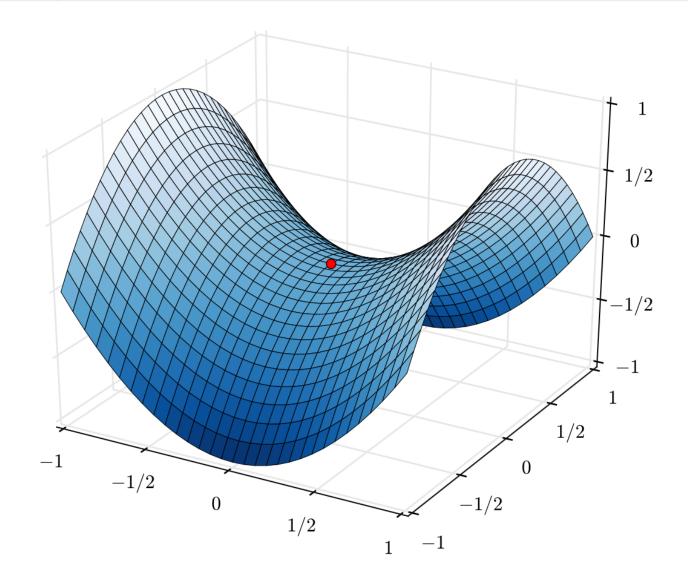
Plugging the first into the second gives:

$$\log l(\theta) = \left\langle \theta, \sum_{m} \sum_{C} f_C(x_C^m, y^m) \right\rangle - \sum_{m} \max_{q^m} \left[H(q^m) + \sum_{C} \sum_{x_C} q_C^m(x_C | y^m) \langle \theta, f_C(x_C, y^m) \rangle \right]$$

$$\max_{\theta} \log l(\theta) = \max_{\theta} \min_{q^1, \dots, q^M} \left[\left\langle \theta, \sum_C \sum_m \left(f_C(x_C^m, y^m) - \sum_{x_C} q_C^m(x_C | y^m) f_C(x_C, y^m) \right) \right\rangle - \sum_m H(q^m) \right]$$

- This is called a minimax or saddle-point problem
- When can we switch the order of the max and min?
 - The function is linear in theta, so there is an advantage to swapping the order

Saddle Point



Source: Wikipedia

Let X be a compact convex subset of \mathbb{R}^n and Y be a convex subset of \mathbb{R}^m

Let f be a real-valued function on $X \times Y$ such that

- $f(x,\cdot)$ a continuous concave function over Y for each $x \in X$
- $f(\cdot, y)$ a continuous convex function over X for each $y \in Y$

then

$$\sup_{y} \min_{x} f(x, y) = \min_{x} \sup_{y} f(x, y)$$

$$\max_{\theta} \min_{q^1, \dots, q^M} \left[\left\langle \theta, \sum_C \sum_m \left(f_C(x_C^m, y^m) - \sum_{x_C} q_C^m(x_C | y^m) f_C(x_C, y^m) \right) \right\rangle - \sum_m H(q^m) \right]$$

is equal to

$$\min_{q^1,\ldots,q^M} \max_{\theta} \left[\left\langle \theta, \sum_C \sum_m \left(f_C(x_C^m, y^m) - \sum_{x_C} q_C^m(x_C | y^m) f_C(x_C, y^m) \right) \right\rangle - \sum_m H(q^m) \right]$$

Solve for θ ?

Maximum Entropy

such that the moment matching condition is satisfied

$$\sum_{m} f(x^{m}, y^{m}) = \sum_{m} \sum_{x} q^{m}(x|y^{m})f(x, y^{m})$$

and q^1, \ldots, q^m are discrete probability distributions

 Instead of maximizing the log-likelihood, we could maximize the entropy over all approximating distributions that satisfy the moment matching condition

MLE in Practice

- We can compute the partition function in linear time over trees using belief propagation
 - We can use this to learn the parameters of tree-structured models
- What if the graph isn't a tree?
 - Use variable elimination to compute the partition function (exact but slow)
 - Use importance sampling to approximate the partition function (can also be quite slow; maybe only use a few samples?)
 - Use loopy belief propagation to approximate the partition function (can be bad if loopy BP doesn't converge quickly)

MLE in Practice

- Practical wisdom:
 - If you are trying to perform some prediction task (i.e., MAP inference to do prediction), then it is better to learn the "wrong model"
 - Learning and prediction should use the same approximations
- What people actually do:
 - Use a few iterations of loopy BP or sampling to approximate the marginals
 - Approximate marginals give approximate gradients (recall that the gradient only depended on the marginals)
 - Perform approximate gradient descent and hope it works

MLE in Practice

- Other options
 - Replace the true entropy with the Bethe entropy and solve the approximate dual problem
 - Use fancier optimization techniques to solve the problem faster
 - e.g., the method of conditional gradients