
CS 6347

Lecture 15

Expectation Maximization



Unobserved Variables

• Latent or hidden variables in the model are never observed

• We may or may not be interested in their values, but their 
existence is crucial to the model

• Some observations in a particular sample may be missing

• Missing information on surveys or medical records (quite 
common)

• We may need to model how the variables are missing
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Hidden Markov Models

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑇𝑇 ,𝑦𝑦1, … ,𝑦𝑦𝑇𝑇 = 𝑝𝑝 𝑦𝑦1 𝑝𝑝 𝑥𝑥1 𝑦𝑦1 �
𝑡𝑡

𝑝𝑝 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡)

• 𝑋𝑋’s are observed variables, 𝑌𝑌’s are latent

• Example: 𝑋𝑋 variables correspond sizes of tree growth rings for 
one year, the 𝑌𝑌 variables correspond to average temperature

𝑌𝑌1 𝑌𝑌2 𝑌𝑌𝑇𝑇−1 𝑌𝑌𝑇𝑇...

𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑇𝑇−1 𝑋𝑋𝑇𝑇...



Missing Data

• Data can be missing from the model in many different ways

• Missing completely at random:  the probability that a data 
item is missing is independent of the observed data and the 
other missing data

• Missing at random:  the probability that a data item is 
missing can depend on the observed data

• Missing not at random:  the probability that a data item is 
missing can depend on the observed data and the other 
missing data
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Handling Missing Data

• Discard all incomplete observations

• Can introduce bias

• Imputation:  actual values are substituted for missing values so that all 
of the data is fully observed

• E.g., find the most probable assignments for the missing data and 
substitute them in (not possible if the model is unknown)

• Use the sample mean/mode

• Explicitly model the missing data 

• For example, could expand the state space

• The most sensible solution, but may be non-trivial if we don’t 
know how/why the data is missing
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Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each possible 
observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not that variable 
is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜,𝑚𝑚 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜)
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Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each possible 
observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not that variable 
is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜,𝑚𝑚 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜)

7

Explicit model of the 
missing data

(missing not at random)



Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each possible 
observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not that variable 
is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜,𝑚𝑚 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜)
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Missing at 
random



Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each possible 
observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not that variable 
is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜,𝑚𝑚 = 𝑝𝑝(𝑚𝑚)𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜)

9

Missing 
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Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each possible 
observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not that variable 
is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜,𝑚𝑚 = 𝑝𝑝(𝑚𝑚)𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜)
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Missing 
completely 
at random

How can you model 
latent variables in this 

framework?



Learning with Missing Data

• In order to design learning algorithms for models with missing 
data, we will make two assumptions

• The data is missing at random

• The model parameters corresponding to the missing data (𝛿𝛿)
are separate from the model parameters of the observed 
data (𝜃𝜃)

• That is

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑚𝑚|𝜃𝜃, 𝛿𝛿 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝛿𝛿 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜|𝜃𝜃)
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Learning with Missing Data

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑚𝑚|𝜃𝜃, 𝛿𝛿 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝛿𝛿 𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 𝜃𝜃

• Under the previous assumptions, the log-likelihood of samples 
𝑥𝑥1,𝑚𝑚1 , … , (𝑥𝑥𝐾𝐾 ,𝑚𝑚𝐾𝐾) is equal to

𝑙𝑙 𝜃𝜃, 𝛿𝛿 = �
𝑘𝑘=1

𝐾𝐾

log 𝑝𝑝(𝑚𝑚𝑘𝑘|𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘 , 𝛿𝛿) + �
𝑘𝑘=1

𝐾𝐾

log �
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘
𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘|𝜃𝜃)
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Learning with Missing Data

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑚𝑚|𝜃𝜃, 𝛿𝛿 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝛿𝛿 𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 𝜃𝜃

• Under the previous assumptions, the log-likelihood of samples 
𝑥𝑥1,𝑚𝑚1 , … , (𝑥𝑥𝐾𝐾 ,𝑚𝑚𝐾𝐾) is equal to

𝑙𝑙 𝜃𝜃, 𝛿𝛿 = �
𝑘𝑘=1

𝐾𝐾

log𝑝𝑝(𝑚𝑚𝑘𝑘|𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘 , 𝛿𝛿) + �
𝑘𝑘=1

𝐾𝐾

log �
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘
𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘|𝜃𝜃)
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Separable in 𝜃𝜃 and 𝛿𝛿, so if we don’t care 
about 𝛿𝛿, then we only have to maximize the 

second term over 𝜃𝜃



Learning with Missing Data

𝑙𝑙 𝜃𝜃 = �
𝑘𝑘=1

𝐾𝐾

log �
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘
𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘|𝜃𝜃)

• This is NOT a concave function of 𝜃𝜃

• In the worst case, could have a different local maximum for 
each possible value of the missing data

• No longer have a closed form solution, even in the case of 
Bayesian networks
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Expectation Maximization

• The expectation-maximization algorithm (EM) is a method to 
find a local maximum of the log-likelihood with missing data

• Basic idea:
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𝑙𝑙 𝜃𝜃 = �
𝑘𝑘=1

𝐾𝐾

log �
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘
𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘|𝜃𝜃)

= �
𝑘𝑘=1

𝐾𝐾

log �
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 ⋅
𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘

𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 𝜃𝜃
𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘

≥ �
𝑘𝑘=1

𝐾𝐾

�
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 log
𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘

𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 𝜃𝜃
𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘

≡ 𝐹𝐹(𝑞𝑞,𝜃𝜃)



Expectation Maximization

𝐹𝐹 𝑞𝑞,𝜃𝜃 ≡ �
𝑘𝑘=1

𝐾𝐾

�
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 log
𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘

𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 𝜃𝜃
𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘

• Maximizing 𝐹𝐹 is equivalent to the maximizing the log-likelihood

• Could maximize it using coordinate ascent

𝑞𝑞𝑡𝑡+1 = arg max
𝑞𝑞1,…,𝑞𝑞𝐾𝐾

𝐹𝐹(𝑞𝑞,𝜃𝜃𝑡𝑡)

𝜃𝜃𝑡𝑡+1 = argmax
𝜃𝜃

𝐹𝐹(𝑞𝑞𝑡𝑡+1,𝜃𝜃)
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Expectation Maximization

�
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 log
𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘

𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 𝜃𝜃
𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘

• This is just −𝑑𝑑 𝑞𝑞𝑘𝑘||𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘
𝑘𝑘 ,⋅ 𝜃𝜃

• Maximized when 𝑞𝑞𝑘𝑘 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 = 𝑝𝑝(𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘|𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘
𝑘𝑘 ,𝜃𝜃)

• Can reformulate the EM algorithm as

𝜃𝜃𝑡𝑡+1 = argmax
𝜃𝜃

�
𝑘𝑘=1

𝐾𝐾

�
𝑥𝑥𝑚𝑚𝑚𝑚𝑠𝑠𝑘𝑘

𝑝𝑝(𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘|𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘
𝑘𝑘 ,𝜃𝜃𝑡𝑡) log𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘

𝑘𝑘 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑜𝑜𝑘𝑘 𝜃𝜃
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An Example:  Bayesian Networks

• Recall that MLE for Bayesian networks without latent variables 
yielded 

𝜃𝜃𝑥𝑥𝑚𝑚|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 𝑚𝑚 =
N𝑥𝑥𝑚𝑚,𝑥𝑥parents 𝑚𝑚

∑𝑥𝑥𝑚𝑚′ N𝑥𝑥𝑚𝑚
′,𝑥𝑥parents 𝑚𝑚

• Let’s suppose that we are given observations from a Bayesian 
network in which one of the variables is hidden 

• What do the iterations of the EM algorithm look like?

(on board)
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