

CS 6347
 Lecture 2

Bayesian Networks

Recap

- Last time:
- Course logistics
- Review of basic probability
- Today:
- Independent set example
- What makes one probability distribution "better" than another?
- Bayesian networks

Graphs \& Independent Sets

- A graph $G=(V, E)$ is defined by a set of vertices V and a set of edges $E \subseteq V \times V$ (i.e., edges correspond to pairs of vertices)

$$
\begin{gathered}
V=\{1,2,3,4\} \\
E=\{(1,2),(1,3),(2,3),(1,4)\}
\end{gathered}
$$

Graphs \& Independent Sets

- A set $S \subseteq V$ is an independent set if there does not exist an edge in E joining any pair of vertices in S

$$
\begin{gathered}
V=\{1,2,3,4\} \\
E=\{(1,2),(1,3),(2,3),(1,4)\}
\end{gathered}
$$

Graphs \& Independent Sets

- A set $S \subseteq V$ is an independent set if there does not exist an edge in E joining any pair of vertices in S

$$
\begin{gathered}
V=\{1,2,3,4\} \\
E=\{(1,2),(1,3),(2,3),(1,4)\}
\end{gathered}
$$

$\{1,4\}$ is not an independent set!

Graphs \& Independent Sets

- A set $S \subseteq V$ is an independent set if there does not exist an edge in E joining any pair of vertices in S

$$
\begin{gathered}
V=\{1,2,3,4\} \\
E=\{(1,2),(1,3),(2,3),(1,4)\}
\end{gathered}
$$

$\{2,4\}$ is an independent set

Example: Independent Sets

- Let Ω be the set of all vertex subsets in a graph $G=(V, E)$
- Let p be the uniform probability distribution over all independent sets in Ω
- Define for each $i \in V$ and each subset of vertices S

$$
\begin{gathered}
X_{i}(S)=1, \quad \text { if } i \in S \text { and } \\
X_{i}(S)=0, \quad \text { otherwise }
\end{gathered}
$$

- $p\left(X_{i}=1\right)$ is the fraction of all independent sets in G containing i
- $p\left(x_{V}\right) \neq 0$ if and only if the x 's define an independent set

Example: Independent Sets

- Let Ω be the set of all vertex subsets in a graph $G=(V, E)$
- Let p be the uniform probability distribution over all independent sets in Ω
- Define for each $i \in V$ and each subset of vertices S

$$
\begin{gathered}
X_{i}(S)=1, \quad \text { if } i \in S \text { and } \\
X_{i}(S)=0, \quad \text { otherwise }
\end{gathered}
$$

- $p\left(X_{i}=1\right)$ is the fraction of all independent sets in G containing
- $p\left(x_{V}\right) \neq 0$ if and only if the x 's define an independent set

Example: Independent Sets

Consider the graph on the left, with the sample space and probabilities from the last slide

- $p\left(X_{1}=1, X_{2}=0, X_{3}=0, X_{4}=1\right)=$?
- $p\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0\right)=$?
- $p\left(X_{2}=1\right)=$?

Example: Independent Sets

Consider the graph on the left, with the sample space and probabilities from the last slide

- $p\left(X_{1}=1, X_{2}=0, X_{3}=0, X_{4}=1\right)=0$
- $p\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0\right)=$?
- $p\left(X_{2}=1\right)=$?

Example: Independent Sets

Consider the graph on the left, with the sample space and probabilities from the last slide

- $p\left(X_{1}=1, X_{2}=0, X_{3}=0, X_{4}=1\right)=0$
- $p\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0\right)=1 / 6$
- $p\left(X_{2}=1\right)=$?

Example: Independent Sets

Consider the graph on the left, with the sample space and probabilities from the last slide

- $p\left(X_{1}=1, X_{2}=0, X_{3}=0, X_{4}=1\right)=0$
- $p\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0\right)=1 / 6$
- $p\left(X_{2}=1\right)=1 / 3$

Example: Independent Sets

- How large of a table is needed to store an arbitrary distribution $p\left(X_{V}\right)$ over subsets of a given graph $G=(V, E)$?

Example: Independent Sets

- How large of a table is needed to store an arbitrary distribution $p\left(X_{V}\right)$ over subsets of a given graph $G=(V, E)$?

$$
2^{|V|_{-1}}
$$

Computational Issue \#1

- How much storage space is required to represent a given joint probability distribution?
- Can we do better than the worst case?
- What properties of the joint distribution affect this number?

Structured Distributions

- Consider a general joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- If X_{1}, \ldots, X_{n} are mutually independent random variables, then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \ldots p\left(x_{n}\right)
$$

- How much information is needed to store the joint distribution?

Structured Distributions

- Consider a general joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- If X_{1}, \ldots, X_{n} are mutually independent random variables, then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \ldots p\left(x_{n}\right)
$$

- How much information is needed to store the joint distribution?
n numbers
- This model is boring: knowing the value of any one variable tells you nothing about the others

Structured Distributions

- Consider a general joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- If X_{1}, \ldots, X_{n} are mutually, conditionally independent given a different random variable Y, then

$$
p\left(x_{1}, \ldots, x_{n} \mid y\right)=p\left(x_{1} \mid y\right) \ldots p\left(x_{n} \mid y\right)
$$

and

$$
p\left(y, x_{1}, \ldots, x_{n}\right)=p(y) p\left(x_{1} \mid y\right) \ldots p\left(x_{n} \mid y\right)
$$

- These models turn out to be surprisingly powerful, despite looking nearly identical to the previous case!

Structured Distributions

- Consider a different joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- Suppose, for $i>2, X_{i}$ is independent of X_{1}, \ldots, X_{i-2} given X_{i-1}

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n}\right)= & p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \ldots p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{n} \mid x_{n-1}\right)
\end{aligned}
$$

- How much storage is needed to represent this model?
?
- This distribution is chain-like

Structured Distributions

- Consider a different joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$ over binary valued random variables
- Suppose, for $i>2, X_{i}$ is independent of X_{1}, \ldots, X_{i-2} given X_{i-1}

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n}\right)= & p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \ldots p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{n} \mid x_{n-1}\right)
\end{aligned}
$$

- How much storage is needed to represent this model?

$$
2 n-1
$$

- This distribution is chain-like

Computational Issue \#2

- Given a joint probability distribution (as a table), how complicated is it to compute individual probabilities?
- Computing $p\left(X_{1}=x_{1}\right)$ from a joint probability distribution $p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)$ is one type of statistical inference

Marginal Distributions

- Given a joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$, the marginal distribution over the $i^{t h}$ random variable is given by

$$
p_{i}\left(X_{i}=x_{i}\right)=\sum_{x_{1}} \sum_{x_{2}} \ldots \sum_{x_{i-1}} \sum_{x_{i}+1} \ldots \sum_{x_{n}} p\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)
$$

- In general, marginal distributions are obtained by fixing some subset of the variables and summing out over the others
- This can be an expensive operation!

Inference/Prediction

- Given fixed values of some subset, E, of the random variables, compute the conditional probability over the remaining variables, S

$$
p\left(X_{S} \mid X_{E}=x_{E}\right)=\frac{p\left(X_{S}, X_{E}=x_{E}\right)}{p\left(X_{E}=x_{E}\right)}
$$

- This involves computing the marginal distribution $p\left(X_{E}=x_{E}\right)$, so we refer to this as marginal inference

Inference/Prediction

- Given fixed values of some subset, E, of the random variables, compute the most likely assignment of the remaining variables, S

$$
\underset{x_{S}}{\operatorname{argmax}} p\left(X_{S}=x_{S} \mid X_{E}=x_{E}\right)
$$

- This is called maximum a posteriori (MAP) inference
- We don't need to do marginal inference to compute the MAP assignment, why not?

Computational Issues

- The amount of storage and the complexity of statistical inference are both affected by the independence structure of the joint probability distribution
- More independence means easier computation and less storage
- Want models that somehow make the underlying independence assumptions explicit, so we can take advantage of them (expensive to check all of the possible independence relationships)

Bayesian Networks

- A Bayesian network is a directed graphical model that represents independence relationships of a given probability distribution
- Directed acyclic graph (DAG), $G=(V, E)$
- Edges are still pairs of vertices, but the edges $(1,2)$ and $(2,1)$ are now distinct in this model
- One node for each random variable
- One conditional probability distribution per node
- Directed edge represents a direct statistical dependence

Bayesian Networks

- A Bayesian network is a directed graphical model that represents independence relationships of a given probability distribution
- Encodes local Markov independence assumptions that each node is independent of its non-descendants given its parents
- Corresponds to a factorization of the joint distribution

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{i} p\left(x_{i} \mid x_{\text {parents }(i)}\right)
$$

Directed Chain

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) \ldots p\left(x_{n} \mid x_{n-1}\right)
$$

An Example

