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Bayesian Networks



Recap
• Last time:

• Course logistics

• Review of basic probability

• Today:

• Independent set example

• What makes one probability distribution “better” than 
another?

• Bayesian networks

2



Graphs & Independent Sets

• A graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is defined by a set of vertices 𝑉𝑉 and 
a set of edges 𝐸𝐸 ⊆ 𝑉𝑉 × 𝑉𝑉 (i.e., edges correspond to 
pairs of vertices)
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𝑉𝑉 = 1,2,3,4

𝐸𝐸 = { 1,2 , 1,3 , 2,3 , 1,4 }



Graphs & Independent Sets

• A set 𝑆𝑆 ⊆ 𝑉𝑉 is an independent set if there does not 
exist an edge in 𝐸𝐸 joining any pair of vertices in 𝑆𝑆
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Graphs & Independent Sets

• A set 𝑆𝑆 ⊆ 𝑉𝑉 is an independent set if there does not 
exist an edge in 𝐸𝐸 joining any pair of vertices in 𝑆𝑆
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𝑉𝑉 = 1,2,3,4

𝐸𝐸 = { 1,2 , 1,3 , 2,3 , 1,4 }

{1,4} is not an independent set!



Graphs & Independent Sets

• A set 𝑆𝑆 ⊆ 𝑉𝑉 is an independent set if there does not 
exist an edge in 𝐸𝐸 joining any pair of vertices in 𝑆𝑆
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𝑉𝑉 = 1,2,3,4

𝐸𝐸 = { 1,2 , 1,3 , 2,3 , 1,4 }

{2,4} is an independent set



Example: Independent Sets

• Let Ω be the set of all vertex subsets in a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• Let 𝑝𝑝 be the uniform probability distribution over all 
independent sets in Ω

• Define for each 𝑖𝑖 ∈ 𝑉𝑉 and each subset of vertices 𝑆𝑆

𝑋𝑋𝑖𝑖 𝑆𝑆 = 1, if 𝑖𝑖 ∈ 𝑆𝑆 and 
𝑋𝑋𝑖𝑖 𝑆𝑆 = 0,          otherwise 

• 𝑝𝑝 𝑋𝑋𝑖𝑖 = 1 is the fraction of all independent sets in 𝐺𝐺 containing 
𝑖𝑖

• 𝑝𝑝 𝑥𝑥𝑉𝑉 ≠ 0 if and only if the 𝑥𝑥’s define an independent set

7



Example: Independent Sets

• Let Ω be the set of all vertex subsets in a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• Let 𝑝𝑝 be the uniform probability distribution over all 
independent sets in Ω

• Define for each 𝑖𝑖 ∈ 𝑉𝑉 and each subset of vertices 𝑆𝑆

𝑋𝑋𝑖𝑖 𝑆𝑆 = 1, if 𝑖𝑖 ∈ 𝑆𝑆 and 
𝑋𝑋𝑖𝑖 𝑆𝑆 = 0,          otherwise 

• 𝑝𝑝 𝑋𝑋𝑖𝑖 = 1 is the fraction of all independent sets in 𝐺𝐺 containing 
𝑖𝑖

• 𝑝𝑝 𝑥𝑥𝑉𝑉 ≠ 0 if and only if the 𝑥𝑥’s define an independent set
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Example: Independent Sets

Consider the graph on the left, with 
the sample space and probabilities 
from the last slide

• 𝑝𝑝 𝑋𝑋1 = 1,𝑋𝑋2 = 0,𝑋𝑋3 = 0,𝑋𝑋4 = 1 = ?

• 𝑝𝑝 𝑋𝑋1 = 0,𝑋𝑋2 = 1,𝑋𝑋3 = 1,𝑋𝑋4 = 0 = ?

• 𝑝𝑝 𝑋𝑋2 = 1 = ?

1

3 4

2
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Example: Independent Sets

Consider the graph on the left, with 
the sample space and probabilities 
from the last slide

• 𝑝𝑝 𝑋𝑋1 = 1,𝑋𝑋2 = 0,𝑋𝑋3 = 0,𝑋𝑋4 = 1 = 0

• 𝑝𝑝 𝑋𝑋1 = 0,𝑋𝑋2 = 1,𝑋𝑋3 = 1,𝑋𝑋4 = 0 = ?

• 𝑝𝑝 𝑋𝑋2 = 1 = ?
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Example: Independent Sets

Consider the graph on the left, with 
the sample space and probabilities 
from the last slide

• 𝑝𝑝 𝑋𝑋1 = 1,𝑋𝑋2 = 0,𝑋𝑋3 = 0,𝑋𝑋4 = 1 = 0

• 𝑝𝑝 𝑋𝑋1 = 0,𝑋𝑋2 = 1,𝑋𝑋3 = 1,𝑋𝑋4 = 0 = 1/6

• 𝑝𝑝 𝑋𝑋2 = 1 = ?

1

3 4

2
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Example: Independent Sets

Consider the graph on the left, with 
the sample space and probabilities 
from the last slide

• 𝑝𝑝 𝑋𝑋1 = 1,𝑋𝑋2 = 0,𝑋𝑋3 = 0,𝑋𝑋4 = 1 = 0

• 𝑝𝑝 𝑋𝑋1 = 0,𝑋𝑋2 = 1,𝑋𝑋3 = 1,𝑋𝑋4 = 0 = 1/6

• 𝑝𝑝 𝑋𝑋2 = 1 = 1/3
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2
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Example: Independent Sets

• How large of a table is needed to store an arbitrary distribution 
𝑝𝑝 𝑋𝑋𝑉𝑉 over subsets of a given graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)? 
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Example: Independent Sets

• How large of a table is needed to store an arbitrary distribution 
𝑝𝑝 𝑋𝑋𝑉𝑉 over subsets of a given graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)? 

𝟐𝟐 𝑽𝑽 -1
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Computational Issue #1

• How much storage space is required to represent a 
given joint probability distribution?

• Can we do better than the worst case?

• What properties of the joint distribution affect this number?
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Structured Distributions

• Consider a general joint distribution 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) over binary 
valued random variables

• If 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are mutually independent random variables, then

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥1 …𝑝𝑝(𝑥𝑥𝑛𝑛)

• How much information is needed to store the joint distribution?

?
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Structured Distributions

• Consider a general joint distribution 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) over binary 
valued random variables

• If 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are mutually independent random variables, then

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥1 …𝑝𝑝(𝑥𝑥𝑛𝑛)

• How much information is needed to store the joint distribution?

𝒏𝒏 numbers

• This model is boring:  knowing the value of any one variable tells 
you nothing about the others
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Structured Distributions

• Consider a general joint distribution 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) over binary 
valued random variables

• If 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are mutually, conditionally independent given a 
different random variable 𝑌𝑌, then

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛|𝑦𝑦 = 𝑝𝑝 𝑥𝑥1|𝑦𝑦 …𝑝𝑝 𝑥𝑥𝑛𝑛 𝑦𝑦
and

𝑝𝑝 𝑦𝑦, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝(𝑦𝑦)𝑝𝑝 𝑥𝑥1|𝑦𝑦 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑦𝑦)

• These models turn out to be surprisingly powerful, despite 
looking nearly identical to the previous case!
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Structured Distributions

• Consider a different joint distribution 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) over binary
valued random variables

• Suppose, for 𝑖𝑖 > 2, 𝑋𝑋𝑖𝑖 is independent of 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−2 given 𝑋𝑋𝑖𝑖−1

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)
= 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥2 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1)

• How much storage is needed to represent this model?

?

• This distribution is chain-like
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Structured Distributions

• Consider a different joint distribution 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) over binary
valued random variables

• Suppose, for 𝑖𝑖 > 2, 𝑋𝑋𝑖𝑖 is independent of 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−2 given 𝑋𝑋𝑖𝑖−1

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)
= 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥2 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1)

• How much storage is needed to represent this model?

𝟐𝟐𝒏𝒏 − 𝟏𝟏

• This distribution is chain-like
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Computational Issue #2

• Given a joint probability distribution (as a table), how 
complicated is it to compute individual probabilities?

• Computing 𝑝𝑝(𝑋𝑋1 = 𝑥𝑥1) from a joint probability distribution 
𝑝𝑝(𝑋𝑋1 = 𝑥𝑥1, … ,𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛) is one type of statistical inference
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Marginal Distributions

• Given a joint distribution 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛), the marginal distribution 
over the 𝑖𝑖𝑡𝑡𝑡random variable is given by

𝑝𝑝𝑖𝑖 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 = �
𝑥𝑥1

�
𝑥𝑥2

… �
𝑥𝑥𝑖𝑖−1

�
𝑥𝑥𝑖𝑖+1

…�
𝑥𝑥𝑛𝑛

𝑝𝑝(𝑋𝑋1 = 𝑥𝑥1, … ,𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛)

• In general, marginal distributions are obtained by fixing some 
subset of the variables and summing out over the others

• This can be an expensive operation!
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Inference/Prediction

• Given fixed values of some subset, 𝐸𝐸, of the random variables, 
compute the conditional probability over the remaining 
variables, 𝑆𝑆

𝑝𝑝 𝑋𝑋𝑆𝑆 𝑋𝑋𝐸𝐸 = 𝑥𝑥𝐸𝐸 =
𝑝𝑝 𝑋𝑋𝑆𝑆,𝑋𝑋𝐸𝐸 = 𝑥𝑥𝐸𝐸
𝑝𝑝 𝑋𝑋𝐸𝐸 = 𝑥𝑥𝐸𝐸

• This involves computing the marginal distribution 𝑝𝑝(𝑋𝑋𝐸𝐸 = 𝑥𝑥𝐸𝐸), 
so we refer to this as marginal inference
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Inference/Prediction

• Given fixed values of some subset, 𝐸𝐸, of the random variables, 
compute the most likely assignment of the remaining variables, 
𝑆𝑆

argmax
𝑥𝑥𝑆𝑆

𝑝𝑝(𝑋𝑋𝑆𝑆 = 𝑥𝑥𝑠𝑠|𝑋𝑋𝐸𝐸 = 𝑥𝑥𝐸𝐸)

• This is called maximum a posteriori (MAP) inference

• We don’t need to do marginal inference to compute the MAP 
assignment, why not?
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Computational Issues

• The amount of storage and the complexity of statistical 
inference are both affected by the independence 
structure of the joint probability distribution

• More independence means easier computation and less 
storage

• Want models that somehow make the underlying 
independence assumptions explicit, so we can take 
advantage of them (expensive to check all of the possible 
independence relationships)

25



Bayesian Networks

• A Bayesian network is a directed graphical model that 
represents independence relationships of a given probability 
distribution

• Directed acyclic graph (DAG), 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• Edges are still pairs of vertices, but the edges (1,2) and (2,1) are 
now distinct in this model

• One node for each random variable

• One conditional probability distribution per node

• Directed edge represents a direct statistical dependence
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Bayesian Networks

• A Bayesian network is a directed graphical model that 
represents independence relationships of a given probability 
distribution

• Encodes local Markov independence assumptions that 
each node is independent of its non-descendants given its 
parents

• Corresponds to a factorization of the joint distribution 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑡𝑡𝑠𝑠(𝑖𝑖))
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Directed Chain

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥2 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1)
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𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑛𝑛−1 𝑋𝑋𝑛𝑛...



An Example

29from Artificial Intelligence: A Modern Approach
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