CS 6347/
Lecture 2

Bayesian Networks



Recap

* Last time:

* Course logistics

* Review of basic probability
* Today:

* Independent set example

* What makes one probability distribution “better” than
another?

e Bayesian networks



Graphs & Independent Sets

 Agraph G = (V,E) is defined by a set of vertices V and
asetofedges E €V XV (i.e., edges correspond to
pairs of vertices)

e"a Vv =1{1,2,3,4}

° ° E ={(1,2),(1,3),(23), (1,4)}



Graphs & Independent Sets

e AsetS € Visanindependent set if there does not
exist an edge in E joining any pair of verticesin S

e"a Vv =1{1,2,3,4}

e ° E = {(112)' (113)1 (2;3)) (1'4)}



Graphs & Independent Sets

e AsetS € Visanindependent set if there does not
exist an edge in E joining any pair of verticesin S

Vv =1{1,2,3,4}

E = {(112)' (1,3), (2,3), (1'4)}

{1,4} is not an independent set!
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Graphs & Independent Sets

e AsetS € Visanindependent set if there does not
exist an edge in E joining any pair of verticesin S

Vv =1{1,2,3,4}

E = {(112)' (1,3), (2,3), (1'4)}

{2,4} is an independent set
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Example: Independent Sets

* Let () be the set of all vertex subsetsina graph ¢ = (V,E)

* Let p be the uniform probability distribution over all
independent sets in ()

 Define foreachi € V and each subset of vertices S

X;(S) =1, ifi € S and
X;(S) =0, otherwise

* p(X; = 1) is the fraction of all independent sets in G containing
i

* p(xy) # 0if and only if the x’s define an independent set



Example: Independent Sets

* Let () be the set of all vertex subsetsina graph ¢ = (V,E)

* Let p be the uniform probability distribution over all
independent sets in ()

 Define foreachi € V and each subset of vertices S

X;(S) =1, ifi € S and
X;(S) =0, otherwise

* p(X; = 1) is the fraction of all independent sets in G containing
i

. if and only if the x’s define an independent set



Example: Independent Sets

Consider the graph on the left, with
the sample space and probabilities
from the last slide

p(Xl — 1,X2 — 0,X3 — 0,X4_ - 1) =7

p(Xl — O,XZ — 1,X3 — 1,X4_ - 0) =7

p(X; =1) =7



Example: Independent Sets

Consider the graph on the left, with
the sample space and probabilities
from the last slide

p(Xl — 1,X2 — 0,X3 — 0,X4_ - 1) =0

p(Xl — O,XZ — 1,X3 — 1,X4_ - 0) =7

p(X; =1) =7
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Example: Independent Sets

Consider the graph on the left, with
the sample space and probabilities
from the last slide

p(Xl — 1,X2 — 0,X3 — 0,X4_ - 1) =0

p(Xl — O,XZ — 1,X3 — 1,X4_ - 0) — 1/6

p(X; =1) =7
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Example: Independent Sets

Consider the graph on the left, with
the sample space and probabilities
from the last slide

p(Xl — 1,X2 — 0,X3 — 0,X4_ - 1) =0

p(Xl — O,XZ — 1,X3 — 1,X4_ - 0) — 1/6

p(X; =1)=1/3
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Example: Independent Sets

* How large of a table is needed to store an arbitrary distribution
p(Xy) over subsets of a given graph G = (V,E)?
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Example: Independent Sets

* How large of a table is needed to store an arbitrary distribution
p(Xy) over subsets of a given graph G = (V,E)?

21Vl-1
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Computational Issue #1

* How much storage space is required to represent a
given joint probability distribution?

e Can we do better than the worst case?

* What properties of the joint distribution affect this number?
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Structured Distributions

* Consider a general joint distribution p(Xy, ..., X;;) over binary
valued random variables

* If Xy, ..., X;, are mutually independent random variables, then
p(xqg, .., xy) = 0(x1) ... p(x)

* How much information is needed to store the joint distribution?

?
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Structured Distributions

* Consider a general joint distribution p(Xy, ..., X;;) over binary
valued random variables

* If Xy, ..., X;, are mutually independent random variables, then
p(x1, oy xy) = pQx1) .. p(x7)
* How much information is needed to store the joint distribution?
1 numbers

* This model is boring: knowing the value of any one variable tells
you nothing about the others

17



Structured Distributions

* Consider a general joint distribution p(Xy, ..., X;;) over binary
valued random variables

* If Xy, ..., X;; are mutually, conditionally independent given a
different random variable Y, then

p(x1, o, Xn|y) = D(x1]Y) ... (2, |¥)
and

P, X1, s Xn) = P X1 |Y) .. P (X0|Y)

 These models turn out to be surprisingly powerful, despite
looking nearly identical to the previous case!
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Structured Distributions

* Consider a different joint distribution p(X;, ..., X;;) over binary
valued random variables

* Suppose, fori > 2, X; is independent of X4, ..., X;_, given X;_4

p(x1, .esXp) = D(x)P(X2]x1) . D |%1, oo X 1)
= p(x)p(x2|x)p(x3]x3) .. D (X [X7-1)

* How much storage is needed to represent this model?

?

 This distribution is chain-like
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Structured Distributions

* Consider a different joint distribution p(X;, ..., X;;) over binary
valued random variables

* Suppose, fori > 2, X; is independent of X4, ..., X;_, given X;_4

p(x1, .esXp) = D(x)P(X2]x1) . D |%1, oo X 1)
= p(x)p(x2|x)p(x3]x3) .. D (X [X7-1)

* How much storage is needed to represent this model?
2n —1

 This distribution is chain-like
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Computational Issue #2

* Given a joint probability distribution (as a table), how
complicated is it to compute individual probabilities?

* Computing p(X; = x1) from a joint probability distribution
p(X; = x4, ..., X,;, = x;,) is one type of statistical inference
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Marginal Distributions

* Given ajoint distribution p(Xy, ..., X;;), the marginal distribution
over the it®random variable is given by

p;(X; = x;) = 77 7 7 ...Zp(Xl = X1, e, Xp = Xp)

X1 Xy Xi—1 X;i+1 Xn

* In general, marginal distributions are obtained by fixing some
subset of the variables and summing out over the others

* This can be an expensive operation!
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Inference/Prediction

* Given fixed values of some subset, E, of the random variables,
compute the conditional probability over the remaining
variables, S

p(XSiXE — XE)
p(Xg = xg)

p(Xs|Xg = xg) =

* This involves computing the marginal distribution p(X; = x),
so we refer to this as marginal inference
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Inference/Prediction

* Given fixed values of some subset, E, of the random variables,
compute the most likely assignment of the remaining variables,
S

argmax p(Xs = xs|Xg = xg)
xS

* This is called maximum a posteriori (MAP) inference

 We don’t need to do marginal inference to compute the MAP
assignment, why not?
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Computational Issues

 The amount of storage and the complexity of statistical
inference are both affected by the independence
structure of the joint probability distribution

* More independence means easier computation and less
storage

 Want models that somehow make the underlying
independence assumptions explicit, so we can take
advantage of them (expensive to check all of the possible
independence relationships)



Bayesian Networks

A Bayesian network is a directed graphical model that
represents independence relationships of a given probability
distribution

* Directed acyclic graph (DAG), G = (V,E)

*  Edges are still pairs of vertices, but the edges (1,2) and (2,1) are
now distinct in this model

* One node for each random variable
* One conditional probability distribution per node

* Directed edge represents a direct statistical dependence
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Bayesian Networks

A Bayesian network is a directed graphical model that
represents independence relationships of a given probability
distribution

* Encodes local Markov independence assumptions that
each node is independent of its non-descendants given its
parents

 Corresponds to a factorization of the joint distribution

p(x1, e, Xp) = 1_[ p(xilxparents(i))
[
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Directed Chain

p(xq, .o, xn) = p(x)p(x2]x)D(x3]x2) .. p(xp [X7—1)
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An Example

P(B)

Burglary

B E [PAB.E)
T T| .95

T F| .94

F T| .29

F F | .00l

P(E)

Earthquake 002

P(J|A)

>

1 —

90
05

P(M|A)

from Artificial Intelligence: A Modern Approach
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