

CS 6347

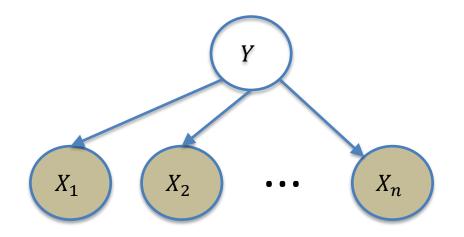
Lecture 4

Markov Random Fields

D-separation

- Let I(p) be the set of all independence relationships in the joint distribution p and I(G) be the set of all independence relationships implied by the graph G
- We say that G is an I-map for I(p) if $I(G) \subseteq I(p)$
- Theorem: the joint probability distribution, p, factorizes with respect to the DAG G = (V, E) iff G is an I-map for I(p)
- An I-map is perfect if I(G) = I(p)
 - Not always possible to perfectly represent all of the independence relations with a graph

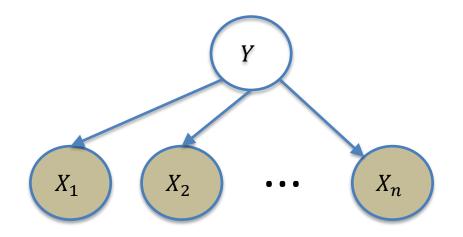
Naïve Bayes



$$p(y, x_1, ..., x_n) = p(y)p(x_1|y) ... p(x_n|y)$$

• In practice, we often have variables that we observe directly and those that can only be observed indirectly

Naïve Bayes

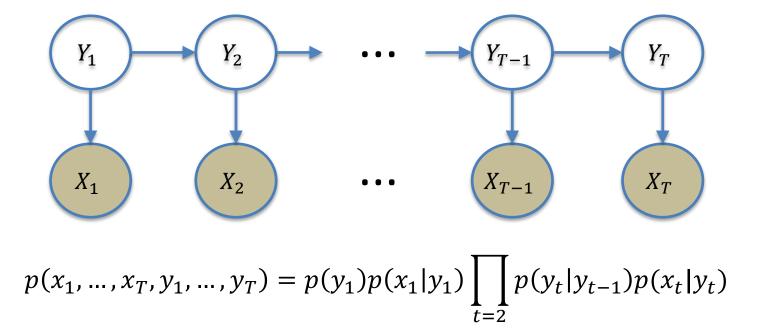


$$p(y, x_1, ..., x_n) = p(y)p(x_1|y) ... p(x_n|y)$$

This model assumes that X₁, ..., X_n are independent given Y, sometimes called naïve Bayes

- Let Y be a binary random variable indicating whether or not an email is a piece of spam
- For each word in the dictionary, create a binary random variable X_i indicating whether or not word i appears in the email
- For simplicity, we will assume that X₁, ..., X_n are independent given Y
- How do we compute the probability that an email is spam?

Hidden Markov Models



- Used in coding, speech recognition, etc.
- Independence assertions?

Markov Random Fields (MRFs)

- A Markov random field is an undirected graphical model
 - Undirected graph G = (V, E)
 - One node for each random variable
 - Nonnegative potential function or "factor" associated with cliques, *C*, of the graph
 - Nonnegative potential functions represent interactions and need not correspond to conditional probabilities (may not even sum to one)

Markov Random Fields (MRFs)

- A Markov random field is an undirected graphical model
 - Corresponds to a **factorization** of the joint distribution

$$p(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)$$

$$Z = \sum_{x'_1, \dots, x'_n} \prod_{c \in C} \psi_c(x'_c)$$

Markov Random Fields (MRFs)

- A Markov random field is an undirected graphical model
 - Corresponds to a **factorization** of the joint distribution

$$p(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(x_c)$$

$$Z = \sum_{x'_1, \dots, x'_n} \prod_{c \in C} \psi_c(x'_c)$$

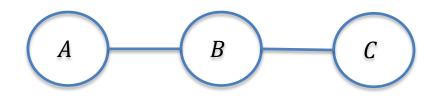
Normalizing constant, Z, often called the partition function

MRF Examples

- Given a graph G = (V, E), express the following as probability distributions that factorize over G
 - Uniform distribution over independent sets
 - Uniform distribution over vertex covers

(done on the board)

Independence Assertions

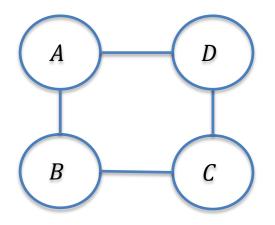


$$p(x_A, x_B, x_C) = \frac{1}{Z} \psi_{AB}(x_A, x_B) \psi_{BC}(x_B, x_C)$$

- How does separation imply independence?
- Showed that $A \perp C \mid B$ on board last lecture

Independence Assertions

- If $X \subseteq V$ is graph separated from $Y \subseteq V$ by $Z \subseteq V$, (i.e., all paths from X to Y go through Z) then $X \perp Y \mid Z$
- What independence assertions follow from this MRF?



Independence Assertions

- Each variable is independent of all of its non-neighbors given its neighbors
 - All paths leaving a single variable must pass through some neighbor
- If the joint probability distribution, p, factorizes with respect to the graph G, then G is an I-map for p
- If G is an I-map of a **strictly positive** distribution p, then p factorizes with respect to the graph G
 - Hamersley-Clifford Theorem

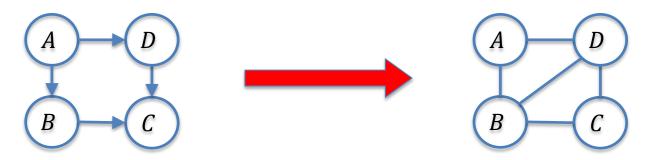
Property	Bayesian Networks	Markov Random Fields
Factorization	Conditional Distributions	Potential Functions
Distribution	Product of Conditional Distributions	Normalized Product of Potentials
Cycles	Directed Not Allowed	Allowed
Partition Function	1	Potentially NP-hard to Compute
Independence Test	d-Separation	Graph Separation

Moralization

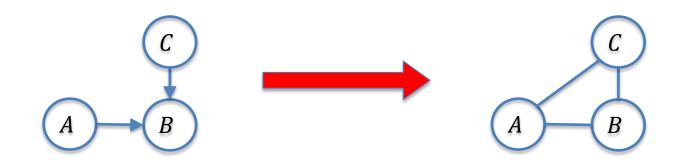
- Every Bayesian network can be converted into an MRF with some possible loss of independence information
 - Remove the direction of all arrows in the network
 - If A and B are parents of C in the Bayesian network, we add an edge between A and B in the MRF
- This procedure is called "moralization" because it "marries" the parents of every node

Moralization

- Every Bayesian network can be converted into an MRF with some possible loss of independence information
 - Remove the direction of all arrows in the network
 - If A and B are parents of C in the Bayesian network, we add an edge between A and B in the MRF
- This procedure is called "moralization" because it "marries" the parents of every node



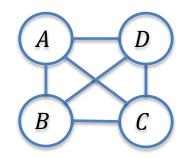
Moralization



• What independence information is lost?

Factorizations

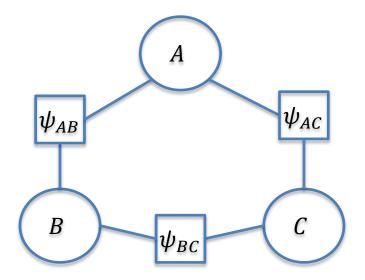
- Many factorizations over the same graph may represent the same joint distribution
 - Some are better than others (e.g., they more compactly represent the distribution)
 - Simply looking at the graph is not enough to understand which specific factorization is being assumed



Factor Graphs

- Factor graphs are used to explicitly represent a given factorization over a given graph
 - Not a different model, but rather different way to visualize an MRF
 - Undirected bipartite graph with two types of nodes: variable nodes (circles) and factor nodes (squares)
 - Factor nodes are connected to the variable nodes on which they depend

$$p(x_A, x_B, x_C) = \frac{1}{Z} \psi_{AB}(x_A, x_B) \psi_{BC}(x_B, x_C) \psi_{AC}(x_A, x_C)$$



MRF Examples

- Given a graph G = (V, E), express the following as probability distributions that factorize over G
 - Express the uniform distribution over matchings (i.e., subsets of edges such that no two edges in the set have a common endpoint) as a factor graph

(done on the board)

Conditional Random Fields (CRFs)

- Undirected graphical models that represent conditional probability distributions $p(Y \mid X)$
 - Potentials can depend on both X and Y

$$p(Y \mid X) = \frac{1}{Z(x)} \prod_{c \in \mathcal{C}} \psi_c(x_c, y_c)$$

$$Z(x) = \sum_{y'} \prod_{c \in \mathcal{C}} \psi_c(x_c, y'_c)$$

Log-Linear Models

• CRFs often assume that the potentials are log-linear functions

$$\psi_c(x_c, y_c) = \exp(w^T f_c(x_c, y_c))$$

 f_c is referred to as a **feature vector** and w is some vector of feature weights

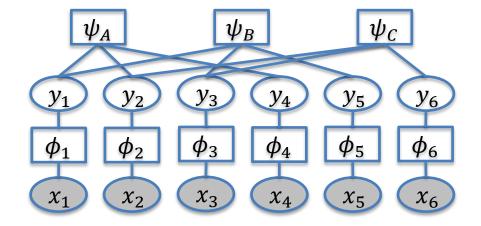
- The feature weights are typically learned from data
- CRFs don't require us to model the full joint distribution (which may not be possible anyhow)

- Binary image segmentation
 - Label the pixels of an image as belonging to the foreground or background
 - +/- correspond to foreground/background
 - Interaction between neighboring pixels in the image depends on how similar the pixels are
 - Similar pixels should preference being in the same part of the image

- Binary image segmentation
 - This can be modeled as a CRF where the image information (e.g., pixel colors) is observed, but the segmentation is unobserved
 - Because the model is conditional, we don't need to describe the joint probability distribution of (natural) images and their foreground/background segmentations
 - CRFs will be particularly important when we want to learn graphical models from observed data

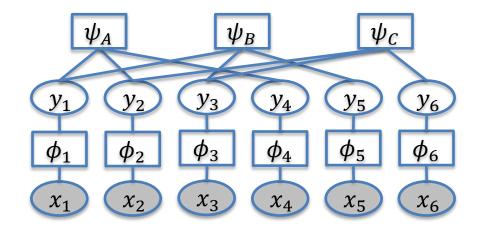
Low Density Parity Check Codes

 Want to send a message across a noisy channel in which bits can be flipped with some probability – use error correcting codes



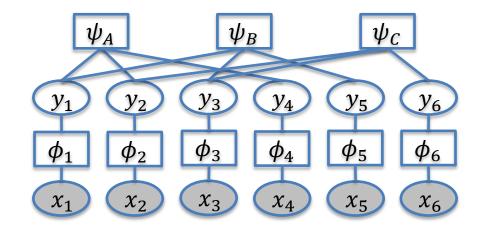
- ψ_A, ψ_B, ψ_C are all parity check constraints: they equal one if their input contains an even number of ones and zero otherwise
- $\phi_i(x_i, y_i) = p(y_i | x_i)$, the probability that the *i*th bit was flipped during transmission

Low Density Parity Check Codes



- The parity check constraints enforce that the y's can only be one of a few possible codewords: 000000, 001011, 010101, 011110, 100110, 101101, 110011, 111000
- Decoding the message that was sent is equivalent to computing the most likely codeword under the joint probability distribution

Low Density Parity Check Codes



• Most likely codeword is given by MAP inference

 $\arg \max_{y} p(y|x)$

Do we need to compute the partition function for MAP inference?