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Lecture 8

Variational Methods



Approximate Marginal Inference

• Last time:  approximate MAP inference

• Reparamaterizations

• Linear programming over the local marginal polytope

• Approximate marginal inference (e.g., 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑥𝑥))

• Sampling methods (MCMC, etc.)

• Variational methods (loopy belief propagation, TRW, etc.)
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KL Divergence

• In order to perform approximate marginal inference, we will try 
to find distributions that approximate the true distribution

• Ideally, the marginals of the approximating distribution 
should be easy to compute

• For this, we need a notion of closeness of distributions
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KL Divergence

𝐷𝐷(𝑝𝑝| 𝑞𝑞 = �
𝑥𝑥

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

• Called the Kullback-Leibler divergence

• 𝐷𝐷(𝑝𝑝| 𝑞𝑞 ≥ 0 with equality if and only if 𝑝𝑝 = 𝑞𝑞

• Not symmetric, 𝐷𝐷(𝑝𝑝| 𝑞𝑞 ≠ 𝐷𝐷(𝑞𝑞||𝑝𝑝)
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Jensen's Inequality

• Let 𝑓𝑓(𝑥𝑥) be a convex function and 𝑎𝑎𝑖𝑖 ≥ 0 such that ∑𝑖𝑖 𝑎𝑎𝑖𝑖 = 1

�
𝑖𝑖

𝑎𝑎𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖) ≥ 𝑓𝑓 �
𝑖𝑖

𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖

• Useful inequality when dealing with convex/concave functions

• When does equality hold?
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KL Divergence

𝐷𝐷(𝑝𝑝| 𝑞𝑞 = �
𝑥𝑥

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

• Suppose that we want to approximate the distribution 𝑝𝑝 with 
some other distribution 𝑞𝑞 in some family of distributions 𝑄𝑄

• Could minimize KL divergence in one of two ways

• arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑝𝑝||𝑞𝑞)

• arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑞𝑞||𝑝𝑝)
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KL Divergence

𝐷𝐷(𝑝𝑝| 𝑞𝑞 = �
𝑥𝑥

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

• Suppose that we want to approximate the distribution 𝑝𝑝 with 
some other distribution 𝑞𝑞 in some family of distributions 𝑄𝑄

• Could minimize KL divergence in one of two ways

• arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑝𝑝||𝑞𝑞)

• arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑞𝑞||𝑝𝑝)
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Called the M-projection

Called the I-projection



KL Divergence

𝐷𝐷(𝑝𝑝| 𝑞𝑞 = �
𝑥𝑥

𝑝𝑝 𝑥𝑥 log
𝑝𝑝 𝑥𝑥
𝑞𝑞 𝑥𝑥

• Suppose that we want to approximate the distribution 𝑝𝑝 with 
some other distribution 𝑞𝑞 in some family of distributions 𝑄𝑄

• Could minimize KL divergence in one of two ways

• arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑝𝑝||𝑞𝑞)

• arg min
𝑞𝑞∈𝑄𝑄

𝐷𝐷(𝑞𝑞||𝑝𝑝)
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As hard as the original inference problem

Potentially easier…



Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = �
𝑥𝑥

𝑞𝑞 𝑥𝑥 log
𝑞𝑞 𝑥𝑥
𝑝𝑝 𝑥𝑥

= �
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑞𝑞(𝑥𝑥) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑝𝑝 𝑥𝑥

= −𝐻𝐻(𝑞𝑞) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑝𝑝 𝑥𝑥

= −𝐻𝐻(𝑞𝑞) + log𝑍𝑍 −�
𝑥𝑥

�
𝐶𝐶

𝑞𝑞 𝑥𝑥 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

= −𝐻𝐻(𝑞𝑞) + log𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = �
𝑥𝑥

𝑞𝑞 𝑥𝑥 log
𝑞𝑞 𝑥𝑥
𝑝𝑝 𝑥𝑥

= �
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑞𝑞(𝑥𝑥) −�
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑝𝑝 𝑥𝑥

= −𝐻𝐻 𝑞𝑞 −�
𝑥𝑥

𝑞𝑞 𝑥𝑥 log 𝑝𝑝 𝑥𝑥

= −𝐻𝐻 𝑞𝑞 + log𝑍𝑍 −�
𝑥𝑥

�
𝐶𝐶

𝑞𝑞 𝑥𝑥 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

= −𝐻𝐻 𝑞𝑞 + log𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Where have we 
seen this before?



MAP Integer Program

max
𝜏𝜏

�
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log𝜙𝜙𝑖𝑖 𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 log𝜓𝜓𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

such that
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For all 𝑖𝑖 ∈ 𝑉𝑉

For all 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖 ∈ 𝑉𝑉, 𝑥𝑥𝑖𝑖

For all 𝑖𝑖, 𝑗𝑗 ∈
𝐸𝐸, 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1

�
𝑥𝑥𝑗𝑗

𝜏𝜏𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖)

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ {0,1}

𝜏𝜏𝑖𝑖𝑗𝑗 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 ∈ {0,1}



Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = −𝐻𝐻 𝑞𝑞 + log𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Using the observation that the KL divergence is non-negative

log𝑍𝑍 ≥ 𝐻𝐻 𝑞𝑞 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = −𝐻𝐻 𝑞𝑞 + log𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Using the observation that the KL divergence is non-negative

log𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• This lower bound holds for any 𝑞𝑞
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Variational Inference

• Let's let 𝑝𝑝 𝑥𝑥 = 1
𝑍𝑍
∏𝑐𝑐 𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐 be the distribution that we want to 

approximate with distribution 𝑞𝑞

𝐷𝐷(𝑞𝑞| 𝑝𝑝 = −𝐻𝐻 𝑞𝑞 + log𝑍𝑍 −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Using the observation that the KL divergence is non-negative

log𝑍𝑍 ≥ 𝐻𝐻 𝑞𝑞 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Maximizing this over all 
probability distributions 𝑞𝑞

gives equality



Variational Inference

log𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• The right hand side is a concave function of 𝑞𝑞

• Despite that, this optimization problem is hard!  (surprised?)

• Exponentially many distributions, 𝑞𝑞 𝑥𝑥
We need a more compact way to express them

• Computing the entropy is non-trivial
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Variational Inference

log𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Two kinds of methods that are used to deal with these 
difficulties

• Mean-field methods:  assume that the approximating 
distribution factorizes as 𝑞𝑞 𝑥𝑥 ∝ ∏𝑖𝑖∈𝑉𝑉 𝑞𝑞𝑖𝑖 𝑥𝑥𝑖𝑖

• Relaxation based methods:  replace hard pieces of the 
optimization with easier optimization problems

• Similar to the MAP IP -> MAP LP relaxation
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Relaxation Approach

log𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• To handle the representation problem, we can use the same LP 
relaxation trick that we did before

• For each 𝜏𝜏 in the marginal polytope, we can rewrite the RHS as

log𝑍𝑍 ≥ 𝐻𝐻 𝜏𝜏 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Relaxation Approach

log𝑍𝑍 ≥ 𝐻𝐻(𝑞𝑞) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑞𝑞𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• To handle the representation problem, we can use the same LP 
relaxation trick that we did before

• For each 𝜏𝜏 in the marginal polytope, we can rewrite the RHS as

log𝑍𝑍 ≥ 𝐻𝐻∗(𝜏𝜏) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐
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Maximum entropy over all 𝜏𝜏
with these marginals



Relaxation Approach

max
𝜏𝜏∈M

𝐻𝐻∗ 𝜏𝜏 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Marginal polytope, 𝑀𝑀, is intractable to optimize over

• Use the local polytope, 𝑇𝑇

�
𝑥𝑥𝐶𝐶∖𝑖𝑖

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 = 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶, 𝑖𝑖 ∈ 𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 = 1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ∈ 𝑉𝑉
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Relaxation Approach

max
𝜏𝜏∈𝐓𝐓

𝐻𝐻∗(𝜏𝜏) + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• Even with the polytope relaxation, the optimization problem still 
remains challenging as computing the entropy remains 
nontrivial

• We will need to approximate the entropy as well

• For which distributions is it easy to compute the entropy?
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Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖∈𝑉𝑉

𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖) �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸

𝑝𝑝𝑖𝑖𝑗𝑗(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)
𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖 𝑝𝑝𝑗𝑗(𝑥𝑥𝑗𝑗)

• 𝑝𝑝𝑖𝑖 is the marginal distribution of the 𝑖𝑖𝑡𝑡𝑡 variable and 𝑝𝑝𝑖𝑖𝑗𝑗 is the 
max-marginal distribution for the edge 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸

• This applies to tree-structured factor graphs as well
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Tree Reparameterization

• On a tree, the joint distribution factorizes in a special way

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖∈𝑉𝑉

𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖)�
𝐶𝐶

𝑝𝑝𝐶𝐶(𝑥𝑥𝐶𝐶)
∏𝑖𝑖∈𝐶𝐶 𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖

• 𝑝𝑝𝑖𝑖 is the marginal distribution of the 𝑖𝑖𝑡𝑡𝑡 variable and 𝑝𝑝𝑖𝑖𝑗𝑗 is the 
max-marginal distribution for the edge 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸

• This applies to tree-structured factor graphs as well
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Entropy of a Tree

• Given this factorization, we can easily compute the entropy of a 
tree structured distribution

𝐻𝐻𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = −�
𝑖𝑖∈V

�
𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖 log𝑝𝑝𝑖𝑖(𝑥𝑥𝑖𝑖) −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑝𝑝𝐶𝐶 𝑥𝑥𝐶𝐶 log
𝑝𝑝𝐶𝐶(𝑥𝑥𝐶𝐶)

∏𝑖𝑖∈𝐶𝐶 𝑝𝑝𝑖𝑖 𝑥𝑥𝑖𝑖

• This only depends on the marginals

• Use this as an approximation for general distributions!
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Bethe Free Energy

• Combining these two approximations gives us the so-called 
Bethe free energy approximation

max
𝜏𝜏∈𝐓𝐓

𝐻𝐻𝐵𝐵 𝜏𝜏 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

where

𝐻𝐻𝐵𝐵 𝜏𝜏 = −�
𝑖𝑖∈V

�
𝑥𝑥𝑖𝑖

𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖 log 𝜏𝜏𝑖𝑖(𝑥𝑥𝑖𝑖) −�
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log
𝜏𝜏𝐶𝐶(𝑥𝑥𝐶𝐶)

∏𝑖𝑖∈𝐶𝐶 𝜏𝜏𝑖𝑖 𝑥𝑥𝑖𝑖
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Bethe Free Energy

max
𝜏𝜏∈𝐓𝐓

𝐻𝐻𝐵𝐵 𝜏𝜏 + �
𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝜏𝜏𝐶𝐶 𝑥𝑥𝐶𝐶 log𝜓𝜓𝑐𝑐 𝑥𝑥𝑐𝑐

• This is not a concave optimization problem for general graphs

• It is still difficult to maximize

• Fixed points of loopy belief propagation, i.e., BP on a graph 
with cycles, correspond to saddle points of this objective 
over the local marginal polytope
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