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Last Time

• PAC learning

• Bias/variance tradeoff

– small hypothesis spaces (not enough flexibility) can have high 
bias

– rich hypothesis spaces (too much flexibility) can have high 
variance

• Today: more on this phenomenon and how to get around it
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Intuition

• Bias 

– Measures the accuracy or quality of the algorithm

– High bias means a poor match

• Variance

– Measures the precision or specificity of the match

– High variance means a weak match

• We would like to minimize each of these

• Unfortunately, we can’t do this independently, there is a trade-off
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Bias-Variance Analysis in Regression

• True function is 𝑦 = 𝑓(𝑥) + 𝜖

– where 𝜖 is normally distributed with zero mean and standard 

deviation 𝜎

• Given a set of training examples, 𝑥(1), 𝑦1 , … , 𝑥
(𝑛), 𝑦𝑛 , we fit 

a hypothesis  𝑔(𝑥) = 𝑤𝑇𝑥 + 𝑏 to the data to minimize the 

squared error

 

𝑖

𝑦𝑖 –𝑔 𝑥
𝑖 2
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2-D Example

Sample 20 points from 

𝑓(𝑥) = 𝑥 + 2 sin(1.5𝑥) + 𝑁(0,0.2)
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2-D Example

50 fits (20 examples each)
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Bias-Variance Analysis

• Given a new data point 𝑥′with observed value 𝑦′ =
𝑓 𝑥′ + 𝜖, want to understand the expected prediction 

error

• Suppose that training samples are drawn independently 

from a distribution 𝑝(𝑆), want to compute

𝐸𝑝[ 𝑦
′–𝑔𝑆 𝑥

′ 2 ]
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Probability Reminder

• Variance of a random variable, 𝑍

𝑉𝑎𝑟 𝑍 = 𝐸 𝑍 − 𝐸 𝑍 2

= 𝐸 𝑍2 − 2𝑍𝐸 𝑍 + 𝐸 𝑍 2

= 𝐸 𝑍2 − 𝐸 𝑍 2

• Properties of 𝑉𝑎𝑟(𝑍)

𝑉𝑎𝑟 𝑎𝑍 = 𝐸 𝑎2𝑍2 − 𝐸 𝑎𝑍 2 = 𝑎2𝑉𝑎𝑟(𝑍)
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Bias-Variance-Noise Decomposition
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𝐸 𝑦′ − 𝑔𝑆 𝑥
′ 2 = 𝐸 𝑔𝑆 𝑥

′ 2 − 2𝑔𝑆 𝑥
′ 𝑦′ + 𝑦′2

= 𝐸 𝑔𝑆 𝑥
′ 2 − 2𝐸 𝑔𝑆 𝑥

′ 𝐸 𝑦′ + 𝐸 𝑦′
2

= 𝑉𝑎𝑟 𝑔𝑆 𝑥
′ + 𝐸 𝑔𝑠(𝑥

′) − 2𝐸 𝑔𝑆 𝑥
′ 𝑓 𝑥′

+ 𝑉𝑎𝑟 𝑦′ + 𝑓 𝑥′ 2

= 𝑉𝑎𝑟 𝑔𝑆 𝑥
′ + 𝐸 𝑔𝑠(𝑥

′) − 𝑓 𝑥′
2
+ 𝑉𝑎𝑟 𝜖

= 𝑉𝑎𝑟 𝑔𝑆 𝑥
′ + 𝐸 𝑔𝑠(𝑥

′) − 𝑓 𝑥′
2
+ 𝜎2



Bias-Variance-Noise Decomposition
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𝐸 𝑦′ − 𝑔𝑆 𝑥
′ 2 = 𝐸 𝑔𝑆 𝑥

′ 2 − 2𝑔𝑆 𝑥
′ 𝑦′ + 𝑦′2

= 𝐸 𝑔𝑆 𝑥
′ 2 − 2𝐸 𝑔𝑆 𝑥

′ 𝐸 𝑦′ + 𝐸 𝑦′
2

= 𝑉𝑎𝑟 𝑔𝑆 𝑥
′ + 𝐸 𝑔𝑠 𝑥

′ 2 − 2𝐸 𝑔𝑆 𝑥
′ 𝑓 𝑥′

+ 𝑉𝑎𝑟 𝑦′ + 𝑓 𝑥′ 2

= 𝑉𝑎𝑟 𝑔𝑆 𝑥
′ + 𝐸 𝑔𝑠(𝑥

′) − 𝑓 𝑥′
2
+ 𝑉𝑎𝑟 𝜖

= 𝑉𝑎𝑟 𝑔𝑆 𝑥
′ + 𝐸 𝑔𝑠(𝑥

′) − 𝑓 𝑥′
2
+ 𝜎2

Variance Bias Noise



Bias, Variance, and Noise

• Variance: 𝐸[ (𝑔𝑆 𝑥
′ − 𝐸 𝑔𝑆(𝑥

′) )2 ]

– Describes how much 𝑔𝑆(𝑥
′) varies from one training set 𝑆

to another

• Bias: 𝐸 𝑔𝑆(𝑥
′) − 𝑓(𝑥′)

– Describes the average error of 𝑔𝑆(𝑥
′)

• Noise: 𝐸 𝑦′ − 𝑓 𝑥′
2
= 𝐸[𝜖2] = 𝜎2

– Describes how much 𝑦′ varies from 𝑓(𝑥′)
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2-D Example

50 fits (20 examples each)
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Bias
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Variance
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Noise
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Bias

• Low bias

– ?

• High bias

– ?
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Bias

• Low bias

– Linear regression applied to linear data

– 2nd degree polynomial applied to quadratic data

• High bias

– Constant function

– Linear regression applied to non-linear data
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Variance

• Low variance 

– ?

• High variance

– ?
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Variance

• Low variance 

– Constant function

– Model independent of training data

• High variance

– High degree polynomial
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Bias/Variance Tradeoff

• (bias2+variance) is what counts for prediction

• As we saw in PAC learning, we often have

– Low bias  ⇒ high variance

– Low variance ⇒ high bias

– Is this a firm rule?
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Reduce Variance Without Increasing Bias

• Averaging reduces variance: let 𝑍1, … , 𝑍𝑁 be i.i.d random 

variables

𝑉𝑎𝑟
1

𝑁
 

𝑖

𝑍𝑖 =
1

𝑁
𝑉𝑎𝑟(𝑍𝑖)

• Idea:  average models to reduce model variance

• The problem

– Only one training set

– Where do multiple models come from?
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Bagging: Bootstrap Aggregation

• Take repeated bootstrap samples from training set 𝐷
(Breiman, 1994)

• Bootstrap sampling: Given set 𝐷 containing 𝑁 training examples, 
create 𝐷′ by drawing 𝑁 examples at random with replacement from 
𝐷

• Bagging

– Create 𝑘 bootstrap samples 𝐷1, … , 𝐷𝑘

– Train distinct classifier on each 𝐷𝑖

– Classify new instance by majority vote / average
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[image from the slides of David Sontag]
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Bagging

Data 1 2 3 4 5 6 7 8 9 10

BS 1 7 1 9 10 7 8 8 4 7 2

BS 2 8 1 3 1 1 9 7 4 10 1

BS 3 5 4 8 8 2 5 5 7 8 8
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• Build a classifier from each bootstrap sample

• In each bootstrap sample, each data point has probability 

1 −
1

𝑁

𝑁
of not being selected

• Expected number of data points in each sample is then

𝑁 ⋅ 1 − 1 −
1

𝑁

𝑁
≈ 𝑁 ⋅ (1 − exp(−1)) = .632 ⋅ 𝑁



Decision Tree Bagging

[image from the slides of David Sontag]
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Decision Tree Bagging (100 Bagged Trees)

[image from the slides of David Sontag]
26



Bagging Experiments
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Bagging Results

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994
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Random Forests
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Random Forests

• Ensemble method specifically designed for decision tree 

classifiers

• Introduce two sources of randomness: “bagging” and 

“random input vectors”

– Bagging method: each tree is grown using a bootstrap 

sample of training data

– Random vector method: best split at each node is 

chosen from a random sample of 𝑚 attributes instead 

of all attributes
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Random Forest Algorithm

• For 𝑏 = 1 to 𝐵

– Draw a bootstrap sample of size 𝑁 from the data

– Grow a tree 𝑇𝑏 using the bootstrap sample as follows

• Choose 𝑚 attributes uniformly at random from the data

• Choose the best attribute among the 𝑚 to split on

• Split on the best attribute and recurse (until partitions have 

fewer than 𝑠𝑚𝑖𝑛 number of nodes)

• Prediction for a new data point 𝑥

– Regression:  
1

𝐵
 𝑏 𝑇𝑏(𝑥)

– Classification:  choose the majority class label among 

𝑇1 𝑥 ,… , 𝑇𝐵(𝑥)
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When Will Bagging Improve Accuracy?

• Depends on the stability of the base-level classifiers.

• A learner is unstable if a small change to the training set causes a 
large change in the output hypothesis

– If small changes in 𝐷 cause large changes in the output, then there 
will be an improvement in performance with bagging

• Bagging helps unstable procedures, but could hurt the performance of 
stable procedures

– Decision trees are unstable

– 𝑘-nearest neighbor is stable
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