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Last Time

• Supervised learning via naive Bayes

– Use MLE to estimate a distribution

– Classify by looking at the conditional distribution, 

𝑝(𝑦|𝑥)

• Today:  logistic regression
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Naïve Bayes

• Naïve Bayes assumes that the underlying distribution that generated 

the data satisfies the following conditional independence 

assumption

𝑝 𝑥1, … , 𝑥𝑚|𝑦 = 

𝑖=1

𝑚

𝑝(𝑥𝑖|𝑦)

• Use MLE to learn the “best” model that satisfies this assumption

• Classify via

𝑦∗ = argmax
𝑦
𝑝 𝑦 𝑝(𝑥1, … , 𝑥𝑚|𝑦)

= argmax
𝑦
𝑝(𝑦) 

𝑖

𝑚

𝑝(𝑥𝑖|𝑦)
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MLE for the Parameters of NB

• Given dataset, count occurrences for all pairs

– 𝐶𝑜𝑢𝑛𝑡(𝑋𝑖 = 𝑥𝑖 , 𝑌 = 𝑦) is the number of samples in which 

𝑋𝑖 = 𝑥𝑖 and 𝑌 = 𝑦

• MLE for discrete NB

𝑝 𝑌 = 𝑦 =
𝐶𝑜𝑢𝑛𝑡 𝑌 = 𝑦

 𝑦′ 𝐶𝑜𝑢𝑛𝑡(𝑌 = 𝑦
′)

𝑝 𝑋𝑖 = 𝑥𝑖 𝑌 = 𝑦 =
𝐶𝑜𝑢𝑛𝑡 𝑋𝑖 = 𝑥𝑖 , 𝑌 = 𝑦

 
𝑥𝑖
′ 𝐶𝑜𝑢𝑛𝑡 (𝑋𝑖 = 𝑥𝑖

′, 𝑌 = 𝑦)
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Naïve Bayes Calculations
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• Learn 𝑝(𝑌|𝑋) directly from the data

– Assume a particular functional form, e.g., a linear 

classifier 𝑝 𝑌 = 1 𝑥 = 1 on one side and 0 on the 

other

– Not differentiable…

• Makes it difficult to learn

• Can’t handle noisy labels

Logistic Regression
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𝑝(𝑌 = 1|𝑥) = 0

𝑝(𝑌 = 1|𝑥) = 1



Logistic Regression

• Learn 𝑝(𝑦|𝑥) directly from the data

– Assume a particular functional 

form

𝑝 𝑌 = −1 𝑥 =
1

1 + exp 𝑤𝑇𝑥 + 𝑏

𝑝 𝑌 = 1 𝑥 =
exp 𝑤𝑇𝑥 + 𝑏

1 + exp 𝑤𝑇𝑥 + 𝑏
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Logistic Function in 𝑚 Dimensions
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Can be applied to 
discrete and 

continuous features

𝑝 𝑌 = −1 𝑥 =
1

1 + exp 𝑤𝑇𝑥 + 𝑏



Functional Form: Two classes

• Given some 𝑤 and 𝑏, we can classify a new point 𝑥 by 

assigning the label 1 if 𝑝 𝑌 = 1 𝑥 > 𝑝(𝑌 = −1|𝑥) and 

− 1 otherwise

– This leads to a linear classification rule:

• Classify as a 1 if 𝑤𝑇𝑥 + 𝑏 > 0

• Classify as a −1 if 𝑤𝑇𝑥 + 𝑏 < 0
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Learning the Weights

• To learn the weights, we maximize the conditional 

likelihood

𝑤∗, 𝑏∗ = argmax
𝑤,𝑏
 

𝑖=1

𝑁

𝑝(𝑦 𝑖 |𝑥 𝑖 , 𝑤, 𝑏)

• This is the not the same strategy that we used in the case of 

naive Bayes

– For naive Bayes, we maximized the log-likelihood, not 

the conditional log-likelihood
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Generative vs. Discriminative Classifiers
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Generative classifier:
(e.g., Naïve Bayes)

• Assume some functional form for 
𝑝(𝑥|𝑦), 𝑝(𝑦)

• Estimate parameters of 𝑝(𝑥|𝑦), 
𝑝(𝑦) directly from training data

• Use Bayes rule to calculate 𝑝 𝑦 𝑥

• This is a generative model

• Indirect computation of 𝑝(𝑌|𝑋)
through Bayes rule

• As a result, can also generate a 
sample of the data,
𝑝(𝑥) = 𝑦 𝑝 𝑦 𝑝(𝑥|𝑦)

Discriminative classifiers:
(e.g., Logistic Regression)

• Assume some functional form for 
𝑝(𝑦|𝑥)

• Estimate parameters of 𝑝(𝑦|𝑥)
directly from training data

• This is the discriminative model

• Directly learn 𝑝(𝑦|𝑥)

• But cannot obtain a sample of the 
data as 𝑝(𝑥) is not available

• Useful for discriminating labels



Learning the Weights

ℓ 𝑤, 𝑏 = ln 

𝑖=1

𝑁

𝑝(𝑦 𝑖 |𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁

ln 𝑝(𝑦 𝑖 |𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
ln 𝑝(𝑌 = 1|𝑥 𝑖 , 𝑤, 𝑏) + 1 −

𝑦 𝑖 + 1

2
ln𝑝(𝑌 = −1|𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
ln
𝑝 𝑌 = 1 𝑥 𝑖 , 𝑤, 𝑏

𝑝 𝑌 = −1 𝑥 𝑖 , 𝑤, 𝑏
+ ln 𝑝(𝑌 = −1|𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
𝑤𝑇𝑥(𝑖) + 𝑏 − ln 1 + exp 𝑤𝑇𝑥 𝑖 + 𝑏
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Learning the Weights

ℓ 𝑤, 𝑏 = ln 

𝑖=1

𝑁

𝑝(𝑦 𝑖 |𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁

ln 𝑝(𝑦 𝑖 |𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
ln 𝑝(𝑌 = 1|𝑥 𝑖 , 𝑤, 𝑏) + 1 −

𝑦 𝑖 + 1

2
ln𝑝(𝑌 = −1|𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
ln
𝑝 𝑌 = 1 𝑥 𝑖 , 𝑤, 𝑏

𝑝 𝑌 = −1 𝑥 𝑖 , 𝑤, 𝑏
+ ln 𝑝(𝑌 = −1|𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
𝑤𝑇𝑥(𝑖) + 𝑏 − ln 1 + exp 𝑤𝑇𝑥 𝑖 + 𝑏
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This is concave in over 𝑤 and 𝑏: take 
derivatives and solve!



Learning the Weights

ℓ 𝑤, 𝑏 = ln 

𝑖=1

𝑁

𝑝(𝑦 𝑖 |𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁

ln 𝑝(𝑦 𝑖 |𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
ln 𝑝(𝑌 = 1|𝑥 𝑖 , 𝑤, 𝑏) + 1 −

𝑦 𝑖 + 1

2
ln𝑝(𝑌 = −1|𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
ln
𝑝 𝑌 = 1 𝑥 𝑖 , 𝑤, 𝑏

𝑝 𝑌 = −1 𝑥 𝑖 , 𝑤, 𝑏
+ ln 𝑝(𝑌 = −1|𝑥 𝑖 , 𝑤, 𝑏)

= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
𝑤𝑇𝑥(𝑖) + 𝑏 − ln 1 + exp 𝑤𝑇𝑥 𝑖 + 𝑏
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No closed form solution 



Learning the Weights

• Can apply gradient ascent to maximize the conditional 

likelihood

𝜕ℓ

𝜕𝑏
= 

𝑖=1

𝑁
𝑦 𝑖 + 1

2
− 𝑝(𝑌 = 1|𝑥 𝑖 , 𝑤, 𝑏)

𝜕ℓ

𝜕𝑤𝑗
= 

𝑖=1

𝑁

𝑥𝑗
(𝑖) 𝑦

𝑖 + 1

2
− 𝑝(𝑌 = 1|𝑥 𝑖 , 𝑤, 𝑏)
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• Can define priors on the weights and bias to prevent 

overfitting

– Normal distribution, zero mean, identity covariance

𝑝 𝑤 = 

𝑗

1

2𝜋𝜎2
exp −

𝑤𝑗
2

2𝜎2

– “Pushes” parameters towards zero

• Regularization

– Helps avoid very large weights and overfitting

Priors
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Priors as Regularization

• The log-MAP objective with this Gaussian prior is then

ln 

𝑖=1

𝑁

𝑝 𝑦 𝑖 𝑥 𝑖 , 𝑤, 𝑏 𝑝 𝑤 𝑝(𝑏) =  

𝑖

𝑁

ln 𝑝 𝑦 𝑖 𝑥 𝑖 , 𝑤, 𝑏 −
𝜆

2
( 𝑤 2

2 + 𝑏2)

– Quadratic penalty: drives weights towards zero

– Adds a negative linear term to the gradients

– Different priors can produce different kinds of regularization

17



Priors as Regularization

• The log-MAP objective with this Gaussian prior is then

ln 

𝑖=1

𝑁

𝑝 𝑦 𝑖 𝑥 𝑖 , 𝑤, 𝑏 𝑝 𝑤 𝑝(𝑏) =  

𝑖

𝑁

ln 𝑝 𝑦 𝑖 𝑥 𝑖 , 𝑤, 𝑏 −
𝜆

2
( 𝑤 2

2 + 𝑏2)

– Quadratic penalty: drives weights towards zero

– Adds a negative linear term to the gradients

– Different priors can produce different kinds of regularization

Somtimes called an ℓ2
regularizer
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Regularization

19

ℓ1 ℓ2



Naïve Bayes vs. Logistic Regression

• Generative vs. Discriminative classifiers

• Non-asymptotic analysis (for Gaussian NB)

– Convergence rate of parameter estimates, 
(𝑚 = # of attributes in 𝑋)

• Size of training data to get close to infinite data solution

• Naïve Bayes needs 𝑂(log𝑚) samples

– NB converges quickly to its (perhaps less helpful) 
asymptotic estimates

• Logistic Regression needs 𝑂(𝑚) samples

– LR converges slower but makes no independence 
assumptions (typically less biased)

[Ng & Jordan, 2002]20



NB vs. LR (on UCI datasets)
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Naïve bayes
Logistic Regression

Sample size 𝑚

[Ng & Jordan, 2002]



LR in General

• Suppose that 𝑦 ∈ {1, … , 𝑅}, i.e., that there are 𝑅 different 

class labels

• Can define a collection of weights and biases as follows

– Choose a vector of biases and a matrix of weights such 

that for 𝑦 ≠ 𝑅

𝑝 𝑌 = 𝑘 𝑥 =
exp 𝑏𝑘 + 𝑖𝑤𝑘𝑖𝑥𝑖

1 +  𝑗<𝑅 exp 𝑏𝑗 +  𝑖𝑤𝑗𝑖𝑥𝑖

and

𝑝 𝑌 = 𝑅 𝑥 =
1

1 +  𝑗<𝑅 exp 𝑏𝑗 + 𝑖𝑤𝑗𝑖𝑥𝑖
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