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Previously…

• We looked at 𝑘-means and hierarchical clustering as 

mechanisms for unsupervised learning

– 𝑘-means was simply a block coordinate descent 

scheme for a specific objective function

• Today:  how to learn probabilistic models for unsupervised 

learning problems
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EM: Soft Clustering

• Clustering (e.g., k-means) typically assumes that each 

instance is given a “hard” assignment to exactly one cluster

• Does not allow uncertainty in class membership or for an 

instance to belong to more than one cluster

– Problematic because data points that lie roughly midway between 

cluster centers are assigned to one cluster 

• Soft clustering gives probabilities that an instance belongs 

to each of a set of clusters



Probabilistic Clustering

• Try a probabilistic model!

• Allows overlaps, clusters of different size, 

etc.

• Can tell a generative story for data

– 𝑝(𝑥|𝑦) 𝑝(𝑦)

• Challenge: we need to estimate model 

parameters without labeled 𝑦’s (i.e., in 

the unsupervised setting)

Z X1 X2

?? 0.1 2.1

?? 0.5 -1.1

?? 0.0 3.0

?? -0.1 -2.0

?? 0.2 1.5

… … …
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Probabilistic Clustering

• Clusters of different shapes and sizes

• Clusters can overlap!  (𝑘-means doesn’t allow this)

5



Finite Mixture Models

• Given a dataset:  𝑥(1), … , 𝑥(𝑁)

• Mixture model:  Θ = {𝜆1, … , 𝜆𝑘 , 𝜃1, … , 𝜃𝑘}

𝑝 𝑥 Θ =  

𝑦=1

𝑘

𝜆𝑦𝑝𝑦(𝑥|𝜃𝑦)

where 𝑝𝑦(𝑥|𝜃𝑦) is a mixture component from some family of 

probability distributions parameterized by 𝜃𝑦 and 𝜆 ≥ 0 such 

that   𝑦 𝜆𝑦 = 1 are the mixture weights

– We can think of 𝜆𝑦 = 𝑝 𝑌 = 𝑦|Θ for some random 

variable 𝑌 that takes values in {1, … , 𝑘}
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Finite Mixture Models
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Multivariate Gaussian

• A 𝑑-dimensional multivariate Gaussian distribution is 

defined by a 𝑑 × 𝑑 covariance matrix Σ and a mean vector 

𝜇

𝑝 𝑥 Σ, 𝜇 =
1

2𝜋 ddet Σ
exp −

1

2
𝑥 − 𝜇 𝑇Σ−1(𝑥 − 𝜇)

• The covariance matrix describes the degree to which pairs 

of variables vary together

– The diagonal elements correspond to variances of the 

individual variables

8



Multivariate Gaussian

• A 𝑑-dimensional multivariate Gaussian distribution is 

defined by a 𝑑 × 𝑑 covariance matrix Σ and a mean vector 

𝜇

𝑝 𝑥 Σ, 𝜇 =
1

2𝜋 ddet Σ
exp −

1

2
𝑥 − 𝜇 𝑇Σ−1(𝑥 − 𝜇)

• The covariance matrix must be a symmetric positive definite 

matrix in order for the above to make sense

– Positive definite:  all eigenvalues are positive & matrix is 

invertible

– Ensures that the quadratic form is concave
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Gaussian Mixture Models (GMMs)

• We can define a GMM by choosing the 𝑘𝑡ℎ component of the 

mixture to be a Gaussian density with parameters

𝜃𝑘 = 𝜇𝑘 , Σ𝑘

𝑝 𝑥 Σk, 𝜇𝑘 =
1

2𝜋 ddet Σk
exp −

1

2
𝑥 − 𝜇𝑘

𝑇Σ𝑘
−1(𝑥 − 𝜇𝑘)
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We could cluster by fitting a mixture of 𝒌 Gaussians to our data
How do we learn these kinds of models?



Learning Gaussian Parameters

• MLE for supervised univariate Gaussian

𝜇𝑀𝐿𝐸 =
1

𝑁
 

𝑖=1

𝑁

𝑥 𝑖

𝜎𝑀𝐿𝐸
2 =
1

𝑁
 

𝑖=1

𝑁

𝑥 𝑖 − 𝜇𝑀𝐿𝐸
2

• MLE for supervised multivariate Gaussian

𝜇𝑀𝐿𝐸 =
1

𝑁
 

𝑖=1

𝑁

𝑥 𝑖

𝛴MLE =
1

𝑁
 

𝑖=1

𝑁

𝑥 𝑖 − 𝜇𝑀𝐿𝐸 𝑥
𝑖 − 𝜇𝑀𝐿𝐸

𝑇
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Learning Gaussian Parameters

• MLE for supervised multivariate mixture of 𝑘 Gaussian 
distributions

𝜇𝑀𝐿𝐸
𝑘 =

1

𝑁𝑘
 

𝑖=1

𝑁𝑘

𝑥 𝑖

Σ𝑀𝐿𝐸
𝑘 =

1

𝑁𝑘
 

𝑖=1

𝑁𝑘

𝑥 𝑖 − 𝜇𝑀𝐿𝐸 𝑥
𝑖 − 𝜇𝑀𝐿𝐸

𝑇

Sums are over the observations that were generated by the 𝑘𝑡ℎ mixture 
component (this requires that we know which points were generated by 

which distribution!)
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The Unsupervised Case

• What if our observations do not include information about 

which of the 𝑘 mixture components generated them?

• Consider a joint probability distribution over data points, 

𝑥(𝑖), and mixture assignments, 𝑦 ∈ {1, … , 𝑘}

• MLE:

argmax
Θ
 

𝑖=1

𝑁

𝑝(𝑥 𝑖 |Θ) = argmax
Θ
 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑝(𝑥 𝑖 , 𝑌 = 𝑦|Θ)

= argmax
Θ
 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑝 𝑥 𝑖 𝑌 = 𝑦, Θ 𝑝(𝑌 = 𝑦|Θ)
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The Unsupervised Case

• What if our observations do not include information about 

which of the 𝑘 mixture components generated them?

• Consider a joint probability distribution over data points, 

𝑥(𝑖), and mixture assignments, 𝑦 ∈ {1, … , 𝑘}

• MLE:

argmax
Θ
 

𝑖=1

𝑁

𝑝(𝑥 𝑖 |Θ) = argmax
Θ
 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑝(𝑥 𝑖 , 𝑌 = 𝑦|Θ)

= argmax
Θ
 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑝 𝑥 𝑖 𝑌 = 𝑦, Θ 𝑝(𝑌 = 𝑦|Θ)
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We only know 
how to compute 
the probabilities 
for each mixture 
component



The Unsupervised Case

• In the case of a Gaussian mixture model

𝑝 𝑥 𝑖 𝑌 = 𝑦, Θ =
1

2𝜋 ddet Σy

exp −
1

2
𝑥(𝑖) − 𝜇𝑦

𝑇
Σ𝑦
−1(𝑥(𝑖) − 𝜇𝑦)

𝑝 𝑌 = 𝑦|Θ = 𝜆𝑦

• Differentiating the MLE objective yields a system of 

equations that is difficult to solve in general

– The solution:  modify the objective to make the 

optimization easier
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Expectation 
Maximization
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Jensen’s Inequality

For a convex function 𝑓:ℝ𝑛 → ℝ, any 𝑎1, … , 𝑎𝑘 ∈ [0,1]

such that 𝑎1 +⋯+ 𝑎𝑘 = 1, and any 𝑥(1), … , 𝑥 𝑘 ∈ ℝ𝑛, 

𝑎1𝑓 𝑥
1 +⋯+ 𝑎𝑘𝑓 𝑥

𝑘 ≥ 𝑓 𝑎1𝑥
1 +⋯+ 𝑎𝑘𝑥

𝑘
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EM Algorithm

log ℓ(Θ) = 

𝑖=1

𝑁

log 

𝑦=1

𝑘

𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

= 

𝑖=1

𝑁

log 

𝑦=1

𝑘
𝑞𝑖 𝑦

𝑞𝑖 𝑦
𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

≥ 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑞𝑖 𝑦 log
𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

𝑞𝑖 𝑦

≡ 𝐹(Θ, 𝑞)
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EM Algorithm

log ℓ(Θ) = 

𝑖=1

𝑁

log 

𝑦=1

𝑘

𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

= 

𝑖=1

𝑁

log 

𝑦=1

𝑘
𝑞𝑖 𝑦

𝑞𝑖 𝑦
𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

≥ 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑞𝑖 𝑦 log
𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

𝑞𝑖 𝑦

≡ 𝐹(Θ, 𝑞)
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𝑞𝑖(𝑦) is an 
arbitrary positive 
probability 
distribution



EM Algorithm

log ℓ(Θ) = 

𝑖=1

𝑁

log 

𝑦=1

𝑘

𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

= 

𝑖=1

𝑁

log 

𝑦=1

𝑘
𝑞𝑖 𝑦

𝑞𝑖 𝑦
𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

≥ 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑞𝑖 𝑦 log
𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

𝑞𝑖 𝑦

≡ 𝐹(Θ, 𝑞)
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Jensen’s ineq.



EM Algorithm

arg max
Θ,𝑞1,..,𝑞𝑁

 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑞𝑖 𝑦 log
𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ

𝑞𝑖 𝑦

• This objective is not jointly concave in Θand 𝑞1, … , 𝑞𝑁

– Best we can hope for is a local maxima (and there could be 

A LOT of them)

• The EM algorithm is a block coordinate ascent scheme that 

finds a local optimum of this objective

– Start from an initialization Θ0 and 𝑞1
0, … , 𝑞𝑁

0
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EM Algorithm

• E step:  with the 𝜃’s fixed, maximize the objective over 𝑞

𝑞𝑡+1 ∈ arg max
𝑞1,..,𝑞𝑁
 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑞𝑖 𝑦 log
𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ𝑡

𝑞𝑖 𝑦

• Using  the method of Lagrange multipliers for the constraint 

that  𝑦 𝑞𝑖 𝑦 = 1 gives

𝑞𝑖
𝑡+1 𝑦 = 𝑝 𝑌 = 𝑦 𝑋 = 𝑥 𝑖 , Θ𝑡
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EM Algorithm

• M step:  with the 𝑞’s fixed, maximize the objective over Θ

𝜃𝑡+1 ∈ argmax
Θ
 

𝑖=1

𝑁

 

𝑦=1

𝑘

𝑞𝑖
𝑡+1 𝑦 log

𝑝 𝑥 𝑖 , 𝑌 = 𝑦 Θ𝑡

𝑞𝑖
𝑡+1 𝑦

• For the case of GMM, we can compute this update in closed 

form 

– This is not necessarily the case for every model

– May require gradient ascent
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EM Algorithm

• Start with random parameters

• E-step maximizes a lower bound on the log-sum for fixed 
parameters

• M-step solves the MLE estimation problem for fixed 
probabilities

• Iterate between the E-step and M-step until convergence
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EM for Gaussian Mixtures

• E-step: 

𝑞𝑖
𝑡 𝑦 =

𝜆𝑖
𝑡⋅𝑝 𝑥 𝑖 𝜇𝑦

𝑡 , Σ𝑦
𝑡

 
𝑦′
𝜆
𝑦′
𝑡 ⋅𝑝 𝑥 𝑖 𝜇𝑦′

𝑡 , Σ𝑦′
𝑡

• M-step:

𝜇𝑦
𝑡+1 =
 𝑖=1
𝑁 𝑞𝑖
𝑡 𝑦 𝑥 𝑖

 𝑖=1
𝑁 𝑞𝑖
𝑡 𝑦

Σ𝑦
𝑡+1 =
 𝑖=1
𝑁 𝑞𝑖
𝑡 𝑦 𝑥 𝑖 − 𝜇𝑦

𝑡+1 𝑥 𝑖 − 𝜇𝑦
𝑡+1 𝑇

 𝑖=1
𝑁 𝑞𝑖
𝑡+1 𝑦

𝜆𝑦
𝑡+1 =
1

𝑁
 

𝑖=1

𝑁

𝑞𝑖
𝑡 𝑦
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Probability of 

𝑥(𝑖) under the 
appropriate 
multivariate 
normal 
distribution



Gaussian Mixture Example: Start
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After first iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration
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After 20th iteration
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Properties of EM

• EM converges to a local optima

– This is because each iteration improves the log-

likelihood

– Proof same as 𝑘-means (just block coordinate ascent)

• E-step can never decrease likelihood

• M-step can never decrease likelihood

• If we make hard assignments instead of soft ones, 

algorithm is equivalent to 𝑘-means!
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