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Structured Distributions
_

* We've seen two types of simple probability models that can be
learned from data

— Naive Bayes: assume attributes are independent given the label

— Hidden Markov Models: assumes the hidden variables form a
Markov chain and each observation is conditionally independent
of the remaining variables given the corresponding latent variable

* Today: Bayesian networks

— Generalizes both of these cases




Structured Distributions
_

* Consider a general joint distribution p (X, ..., X,,) over binary
valued random variables

* IfX,, ..., X,, areall independent given a different random variable Y/,
then

p(xq, ey X |Y) = p(x1y) . D (20 |y)
and

PV, X1, s X)) = PYIP(X1|Y) .. 0 (X0 ]Y)

* How much storage is needed to represent this model?




Structured Distributions
_

 Consider a different joint distribution p(X3, ..., X,,) over binary
valued random variables

* Suppose, fori > 2, X; isindependent of X, ..., X;_, given X;_4

p(x1, . Xp) = p(x)P(x21%1) . (X | X1, ons Xp—q)
= p(x)p(x2]x)p(x3]x3) ... D (X0 [X7—1)

* How much storage is needed to represent this model?

* This distribution corresponds to a Markov chain




Bayesian Network
-

* ABayesian network is a directed graphical model that captures
independence relationships of a given probability distribution

— Directed acyclic graph (DAG), ¢ = (V, E)
— One node for each random variable
— One conditional probability distribution per node

— Directed edge represents a direct statistical dependence




Bayesian Network
-

* ABayesian network is a directed graphical model that captures
independence relationships of a given probability distribution

— Encodes local Markov independence assumptions that each
node is independent of its non-descendants given its parents

— Corresponds to a factorization of the joint distribution

P(Xl, ---»xn) — Hp(xilxparents(i))
L




Directed Chain

p(x1, oy X)) = p(x)D(x2]x1)p(x3]2%2) oo D (X0 | X0 —1)




Example:

* Local Markov independence relations?

e Joint distribution?




MLE for Bayesian Networks

« Givensamples x(D, ..., x() from some unknown
Bayesian network that factors over the directed acyclic
graph G

— The parameters of a Bayesian model are simply the
conditional probabilities that define the factorization

— Foreach i € G we need to learmn p(x;|Xpqrents(i))s

create a variable 6, Xparents(

log1(0) = z z log Hx-(m)|x1(9731)ﬂent5(i)

m LEV
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MLE for Bayesian Networks

logl(8) = z z log Hxi(m)|x1(;zzl1)~ent5(i)

m LEV

= log8_my,_m)
ZZ Xi |xparents(i)
eV m

- z z z I\Ixi»xparents(i)10g Hxi|xparents(i)

LEV Xparents(i) Xi
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MLE for Bayesian Networks

logl(8) = z z log Hxi(m)|x1(;g1)~ent5(i)

m LEV

= log8_my,_m)
ZZ Xi |xparents(i)
eV m

- z z z I\Ixi»xparents(i)log Hxi|xparents(i)

LEV Xparents(i) Xi

XiXparents(i) 19 the number of times

(X, Xparents(i)) Was observed in the training set
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MLE for Bayesian Networks

logl(8) = z z log Hxi(m)|x1(;zzl1)~ent5(i)

m LEV

= log6_ ), m
ZZ 5 X |xparents(i)
LV m

- z z z I\Ixi»xparents(i)log Hxi|xparents(i)

LEV Xparents(i) Xi

FiX Xparents(i) solve for Hxilxparents(i) for all x;

(on the board)
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MLE for Bayesian Networks

XiXparents(i) __ ~ XiXparents(i)

xi|xparents(i) = o

parents(i) Xparents(i)

* This is just the empirical conditional probability distribution

— Worked out nicely because of the factorization of the
joint distribution

e Same as MLE for naive Bayes and HMMs (which are both
BNs)

13




MLE for Bayesian Networks

* The previous slides have assumed that we are essentially
given the structure (i.e., the DAG) of the network that we
would like to learn

— This may not be the case in practice: we may only be
given samples and must learn both the parameters and
the structure of the underlying network

— But how do we decide which structures are better than
others?
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BN Structure Learning

* The MLE of the conditional probability tables was given by
the empirical probabilities

o » O O O
o O »,r O O
R O O K, B
R B, O Kk O
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BN Structure Learning
[ ——

* The MLE of the conditional probability tables was given by
the empirical probabilities

A | B _|P(BlA)
(2) ESETE o oo
0 4/5 0 1 1/4
1 1/5 1 0 1
() (e e
8 | o [rom)fl A | c [pcia)
Q 0 0 1/4 0 0 1/4
0 1 3/4 0 1 3/4
1 0 1 1 0 1
1 1 0 1 1 0

o » O O O
o O »,r O O
R, O O Kk K
) Rk O Lk O
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BN Structure Learning
[ ——

* The MLE of the conditional probability tables was given by
the empirical probabilities

A | B _[PBIA)

° NN o« o

0 4/5 0 1 1/4

1 1/5 1 0 1

ool BENE
A | o [eoia ] A | c_lPCia)

0 0 1/2 0 0 1/4

0 1 1/2 0 1 3/4

1 0 0 1 0 1

1 1 1 1 1 0

o » O O O
o O »,r O O
R, O O Kk K
) Rk O Lk O
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BN Structure Learning
[ ——

e Which model should be preferred?




BN Structure Learning
[ ——

e Which model should be preferred?

Which one has the highest log-likelihood given
the data?
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BN Structure Learning
[ ——

e Which model should be preferred?

Which one has the highest log-likelihood given
the data?
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BN Structure Learning
e

* Determining the structure that maximizes the log-likelihood
is not too difficult

— A complete DAG always maximizes the log-likelihood!
— This almost certainly results in overfitting
* Alternative is to attempt to learn simple structures

— Optimize the log-likelihood over simple networks

21




Chow-Liu Trees
_

e Suppose that we want to find the best tree-structured BN
that represents a given joint probability distribution

— Find the tree-structured BN that maximizes the likelihood

 Let’s consider the log-likelihood of a fixed tree T

— Assume that the edges are directed so that each node has exactly
one parent
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Chow-Liu Trees
I

For a fixed tree:
in:xparent(i)
mgtxlogl(@,T) = Nux; xparent( 108 N
LEV(T) Xparent(i) Xi Xparent(i)

>

i€V (T)

in'xparent(i)
X

. X .
; l arent(1
Xi Xparent(i) Xi p ®

= [Z Z Ny, log Ny,

IEV x;

+ in,leog

N, .N.,.
(i,))EE(T) x;,X; Xit ' Xj
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Chow-Liu Trees
I

For a fixed tree:
N.. .
mHaX log l(@, T) - z z z NXi,Xparent(i)IOg ;l’xparent(l)
LEV(T) Xparent(i) Xi Xparent(i)

in'xparent(i)
X

Xparent(i) Xi i" Xparent(i)

in,leog

in,x]' ]
1,j)EE(T) XiXj

inNXj

Doesn’t depend on the selected tree!

24




Chow-Liu Trees
I

For a fixed tree:
N.. .
mHaX log l(@, T) - z z z NXi,Xparent(i)IOg ;l’xparent(l)
LEV(T) Xparent(i) Xi Xparent(i)

Ny,
— i*parent(i)
= 2 |2 M08 Nt D, D Nampanis 0BTy
IeV(T) | xi Xparent(i) Xi Xi” "Xparent(i)
= [ZZin log Ny, | +
IEV x; (i,j)EE(T Xi)X j

This is the (empirical) mutual information, usually
denoted I(x;; x;)

:




Chow-Liu Trees
_

» To maximize the log-likelihood, it then suffices to choose the tree T
that maximizes

max I(x;; x;
ax ) 16x:%)
L]

* This problem can be solved by finding the maximum weight spanning
tree in the complete graph with edge weight w;; given by the mutual

information over the edge (i, j)

— Greedy algorithm works: at each step, pick the largest remaining
edge that does not form a cycle when added to the already
selected edges
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Chow-Liu Trees

* To use this technique for learning, we simply compute the
mutual information for each edge using the empirical
probability distributions and then find the max-weight
spanning tree

* As aresult, we can learn tree-structured BNs in polynomial
time

— Can we generalize this to all DAGs?
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Chow-Liu Trees: Example
D —

* Edge weights correspond to empirical mutual information
for the earlier samples
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Chow-Liu Trees: Example
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* Edge weights correspond to empirical mutual information
for the earlier samples

29




Chow-Liu Trees: Example

O—O
@

* Any directed tree (with one parent per node) over these
edges maximizes the log-likelihood

— Why doesn’t the direction matter?
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