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Structured Distributions

• We’ve seen two types of simple probability models that can be 

learned from data

– Naive Bayes:  assume attributes are independent given the label

– Hidden Markov Models:  assumes the hidden variables form a 

Markov chain and each observation is conditionally independent 

of the remaining variables given the corresponding latent variable

• Today:  Bayesian networks

– Generalizes both of these cases
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Structured Distributions

• Consider a general joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• If 𝑋1, … , 𝑋𝑛 are all independent given a different random variable 𝑌, 

then

𝑝 𝑥1, … , 𝑥𝑛|𝑦 = 𝑝 𝑥1|𝑦 …𝑝 𝑥𝑛 𝑦

and

𝑝 𝑦, 𝑥1, … , 𝑥𝑛 = 𝑝(𝑦)𝑝 𝑥1|𝑦 …𝑝(𝑥𝑛|𝑦)

• How much storage is needed to represent this model?
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Structured Distributions

• Consider a different joint distribution 𝑝(𝑋1, … , 𝑋𝑛) over binary 

valued random variables

• Suppose, for 𝑖 > 2, 𝑋𝑖 is independent of 𝑋1, … , 𝑋𝑖−2 given 𝑋𝑖−1

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 …𝑝(𝑥𝑛|𝑥1, … , 𝑥𝑛−1)

= 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥2 …𝑝(𝑥𝑛|𝑥𝑛−1)

• How much storage is needed to represent this model?

• This distribution corresponds to a Markov chain
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Bayesian Network

• A Bayesian network is a directed graphical model that captures 

independence relationships of a given probability distribution

– Directed acyclic graph (DAG), 𝐺 = (𝑉, 𝐸)

– One node for each random variable

– One conditional probability distribution per node

– Directed edge represents a direct statistical dependence
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Bayesian Network

• A Bayesian network is a directed graphical model that captures 

independence relationships of a given probability distribution

– Encodes local Markov independence assumptions that each 

node is independent of its non-descendants given its parents

– Corresponds to a factorization of the joint distribution 

𝑝 𝑥1, … , 𝑥𝑛 = 

𝑖

𝑝(𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖))
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Directed Chain

𝑝 𝑥1, … , 𝑥𝑛 = 𝑝 𝑥1 𝑝 𝑥2 𝑥1 𝑝 𝑥3 𝑥2 …𝑝(𝑥𝑛|𝑥𝑛−1)
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Example:

• Local Markov independence relations?

• Joint distribution?
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MLE for Bayesian Networks

• Given samples 𝑥(1), … , 𝑥(𝑀) from some unknown 

Bayesian network that factors over the directed acyclic 

graph 𝐺

– The parameters of a Bayesian model are simply the 

conditional probabilities that define the factorization

– For each 𝑖 ∈ 𝐺 we need to learn 𝑝(𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 ), 

create a variable 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)

log 𝑙 𝜃 = 

𝑚

 

𝑖∈𝑉

log 𝜃
𝑥𝑖
(𝑚)
|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
(𝑚)
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MLE for Bayesian Networks

log 𝑙 𝜃 = 

𝑚

 

𝑖∈𝑉

log 𝜃
𝑥𝑖
(𝑚)
|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
(𝑚)

= 

𝑖∈𝑉

 

𝑚

log 𝜃
𝑥𝑖
(𝑚)
|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
(𝑚)

= 

𝑖∈𝑉

 

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

 

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
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MLE for Bayesian Networks

log 𝑙 𝜃 = 

𝑚

 

𝑖∈𝑉

log 𝜃
𝑥𝑖
(𝑚)
|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
(𝑚)

= 

𝑖∈𝑉

 

𝑚

log 𝜃
𝑥𝑖
(𝑚)
|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
(𝑚)

= 

𝑖∈𝑉

 

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

 

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
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𝑁𝑥𝑖,𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 is the number of times 

(𝑥𝑖 , 𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 ) was observed in the training set



MLE for Bayesian Networks

log 𝑙 𝜃 = 

𝑚

 

𝑖∈𝑉

log 𝜃
𝑥𝑖
(𝑚)
|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
(𝑚)

= 

𝑖∈𝑉

 

𝑚

log 𝜃
𝑥𝑖
(𝑚)
|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑖)
(𝑚)

= 

𝑖∈𝑉

 

𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖

 

𝑥𝑖

N𝑥i,𝑥parents(i)log 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖
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Fix 𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 solve for 𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 for all 𝑥𝑖
(on the board)



MLE for Bayesian Networks

𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 =
N𝑥𝑖,𝑥parents 𝑖
 
𝑥𝑖
′N𝑥𝑖
′,𝑥parents 𝑖

=
N𝑥𝑖,𝑥parents 𝑖
N𝑥parents 𝑖

• This is just the empirical conditional probability distribution

– Worked out nicely because of the factorization of the 

joint distribution

• Same as MLE for naive Bayes and HMMs (which are both 

BNs)
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MLE for Bayesian Networks

• The previous slides have assumed that we are essentially 

given the structure (i.e., the DAG) of the network that we 

would like to learn

– This may not be the case in practice:  we may only be 

given samples and must learn both the parameters and 

the structure of the underlying network

– But how do we decide which structures are better than 

others?
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BN Structure Learning

• The MLE of the conditional probability tables was given by 

the empirical probabilities
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BN Structure Learning

• The MLE of the conditional probability tables was given by 

the empirical probabilities
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𝐴

𝐵

𝐷

𝐶

A B C D

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 1

0 0 1 1

A P(A)

0 4/5

1 1/5

A B P(B|A)

0 0 3/4

0 1 1/4

1 0 1

1 1 0

A C P(C|A)

0 0 1/4

0 1 3/4

1 0 1

1 1 0

B D P(D|B)

0 0 1/4

0 1 3/4

1 0 1

1 1 0



BN Structure Learning

• The MLE of the conditional probability tables was given by 

the empirical probabilities
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𝐴

𝐵𝐷 𝐶

A B C D

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 1

0 0 1 1

A P(A)

0 4/5

1 1/5

A B P(B|A)

0 0 3/4

0 1 1/4

1 0 1

1 1 0

A C P(C|A)

0 0 1/4

0 1 3/4

1 0 1

1 1 0

A D P(D|A)

0 0 1/2

0 1 1/2

1 0 0

1 1 1



BN Structure Learning

• Which model should be preferred?
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BN Structure Learning

• Which model should be preferred?
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BN Structure Learning

• Which model should be preferred?
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BN Structure Learning

• Determining the structure that maximizes the log-likelihood 
is not too difficult

– A complete DAG always maximizes the log-likelihood!

– This almost certainly results in overfitting

• Alternative is to attempt to learn simple structures

– Optimize the log-likelihood over simple networks
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Chow-Liu Trees

• Suppose that we want to find the best tree-structured BN 

that represents a given joint probability distribution

– Find the tree-structured BN that maximizes the likelihood

• Let’s consider the log-likelihood of a fixed tree 𝑇

– Assume that the edges are directed so that each node has exactly 

one parent
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Chow-Liu Trees

For a fixed tree:

max
𝜃
log 𝑙 𝜃, 𝑇 =  

𝑖∈𝑉(𝑇)

 

𝑥parent 𝑖

 

𝑥𝑖

N𝑥i,𝑥parent(𝑖)log
N𝑥𝑖,𝑥parent 𝑖
𝑁𝑥parent(𝑖)

=  

𝑖∈𝑉(𝑇)

 

𝑥𝑖

𝑁𝑥𝑖 log𝑁𝑥𝑖 +  

𝑥parent 𝑖

 

𝑥𝑖

N𝑥i,𝑥parent(i)log
N𝑥𝑖,𝑥parent 𝑖
𝑁𝑥𝑖𝑁𝑥parent(𝑖)

=  

𝑖∈𝑉

 

𝑥𝑖

𝑁𝑥𝑖 log𝑁𝑥𝑖 +  

𝑖,𝑗 ∈𝐸(𝑇)

 

𝑥𝑖,𝑥𝑗

N𝑥i,𝑥𝑗log
N𝑥i,𝑥𝑗
𝑁𝑥𝑖𝑁𝑥𝑗
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Chow-Liu Trees

For a fixed tree:

max
𝜃
log 𝑙 𝜃, 𝑇 =  

𝑖∈𝑉(𝑇)

 

𝑥parent 𝑖

 

𝑥𝑖

N𝑥i,𝑥parent(𝑖)log
N𝑥𝑖,𝑥parent 𝑖
𝑁𝑥parent(𝑖)

=  

𝑖∈𝑉(𝑇)

 

𝑥𝑖

𝑁𝑥𝑖 log𝑁𝑥𝑖 +  

𝑥parent 𝑖

 

𝑥𝑖

N𝑥i,𝑥parent(i)log
N𝑥𝑖,𝑥parent 𝑖
𝑁𝑥𝑖𝑁𝑥parent(𝑖)

=  

𝑖∈𝑉

 

𝑥𝑖

𝑁𝑥𝑖 log𝑁𝑥𝑖 +  

𝑖,𝑗 ∈𝐸(𝑇)

 

𝑥𝑖,𝑥𝑗

N𝑥i,𝑥𝑗log
N𝑥i,𝑥𝑗
𝑁𝑥𝑖𝑁𝑥𝑗
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Doesn’t depend on the selected tree!



Chow-Liu Trees

For a fixed tree:

max
𝜃
log 𝑙 𝜃, 𝑇 =  

𝑖∈𝑉(𝑇)

 

𝑥parent 𝑖

 

𝑥𝑖

N𝑥i,𝑥parent(𝑖)log
N𝑥𝑖,𝑥parent 𝑖
𝑁𝑥parent(𝑖)

=  

𝑖∈𝑉(𝑇)

 

𝑥𝑖

𝑁𝑥𝑖 log𝑁𝑥𝑖 +  

𝑥parent 𝑖

 

𝑥𝑖

N𝑥i,𝑥parent(i)log
N𝑥𝑖,𝑥parent 𝑖
𝑁𝑥𝑖𝑁𝑥parent(𝑖)

=  

𝑖∈𝑉

 

𝑥𝑖

𝑁𝑥𝑖 log𝑁𝑥𝑖 +  

𝑖,𝑗 ∈𝐸(𝑇)

 

𝑥𝑖,𝑥𝑗

N𝑥i,𝑥𝑗log
N𝑥i,𝑥𝑗
𝑁𝑥𝑖𝑁𝑥𝑗
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This is the (empirical) mutual information, usually 
denoted 𝐼(𝑥𝑖; 𝑥𝑗)



Chow-Liu Trees

• To maximize the log-likelihood, it then suffices to choose the tree 𝑇
that maximizes

max
𝑇
 

𝑖,𝑗

𝐼(𝑥𝑖; 𝑥𝑗)

• This problem can be solved by finding the maximum weight spanning 

tree in the complete graph with edge weight 𝑤𝑖𝑗 given by the mutual 

information over the edge (𝑖, 𝑗)

– Greedy algorithm works:  at each step, pick the largest remaining 

edge that does not form a cycle when added to the already 

selected edges
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Chow-Liu Trees

• To use this technique for learning, we simply compute the 

mutual information for each edge using the empirical 

probability distributions and then find the max-weight 

spanning tree

• As a result, we can learn tree-structured BNs in polynomial 

time 

– Can we generalize this to all DAGs?
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Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information 

for the earlier samples
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Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information 

for the earlier samples
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Chow-Liu Trees:  Example

• Any directed tree (with one parent per node) over these 

edges maximizes the log-likelihood

– Why doesn’t the direction matter?
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