

Bayesian Networks

Nicholas Ruozzi University of Texas at Dallas

Structured Distributions

- We've seen two types of simple probability models that can be learned from data
 - Naive Bayes: assume attributes are independent given the label
 - Hidden Markov Models: assumes the hidden variables form a Markov chain and each observation is conditionally independent of the remaining variables given the corresponding latent variable
- Today: Bayesian networks
 - Generalizes both of these cases

Structured Distributions

- Consider a general joint distribution $p(X_1, ..., X_n)$ over binary valued random variables
- If *X*₁, ..., *X*_n are all independent given a different random variable *Y*, then

$$p(x_1, \dots, x_n | y) = p(x_1 | y) \dots p(x_n | y)$$

and

$$p(y, x_1, \dots, x_n) = p(y)p(x_1|y) \dots p(x_n|y)$$

• How much storage is needed to represent this model?

Structured Distributions

- Consider a different joint distribution $p(X_1, ..., X_n)$ over binary valued random variables
- Suppose, for i > 2, X_i is independent of X_1 , ..., X_{i-2} given X_{i-1}

$$p(x_1, \dots, x_n) = p(x_1)p(x_2|x_1) \dots p(x_n|x_1, \dots, x_{n-1})$$

= $p(x_1)p(x_2|x_1)p(x_3|x_2) \dots p(x_n|x_{n-1})$

- How much storage is needed to represent this model?
- This distribution corresponds to a Markov chain

Bayesian Network

- A **Bayesian network** is a directed graphical model that captures independence relationships of a given probability distribution
 - Directed acyclic graph (DAG), G = (V, E)
 - One node for each random variable
 - One conditional probability distribution per node
 - Directed edge represents a direct statistical dependence

Bayesian Network

- A **Bayesian network** is a directed graphical model that captures independence relationships of a given probability distribution
 - Encodes local Markov independence assumptions that each node is independent of its non-descendants given its parents
 - Corresponds to a **factorization** of the joint distribution

$$p(x_1, \dots, x_n) = \prod_i p(x_i | x_{parents(i)})$$

Directed Chain

$p(x_1, \dots, x_n) = p(x_1)p(x_2|x_1)p(x_3|x_2) \dots p(x_n|x_{n-1})$

Example:

- Local Markov independence relations?
- Joint distribution?

- Given samples $x^{(1)}, \ldots, x^{(M)}$ from some unknown Bayesian network that factors over the directed acyclic graph G
 - The parameters of a Bayesian model are simply the conditional probabilities that define the factorization
 - For each $i \in G$ we need to learn $p(x_i | x_{parents(i)})$, create a variable $\theta_{x_i | x_{parents(i)}}$

$$\log l(\theta) = \sum_{m} \sum_{i \in V} \log \theta_{x_i^{(m)} | x_{parents(i)}^{(m)}}$$

$$\log l(\theta) = \sum_{m} \sum_{i \in V} \log \theta_{x_i^{(m)} | x_{parents(i)}^{(m)}}$$
$$= \sum_{i \in V} \sum_{m} \log \theta_{x_i^{(m)} | x_{parents(i)}^{(m)}}$$
$$= \sum_{i \in V} \sum_{x_{parents(i)}} \sum_{x_i} N_{x_i, x_{parents(i)}} \log \theta_{x_i | x_{parents(i)}}$$

$$\log l(\theta) = \sum_{m} \sum_{i \in V} \log \theta_{x_i^{(m)} | x_{parents(i)}^{(m)}}$$
$$= \sum_{i \in V} \sum_{m} \log \theta_{x_i^{(m)} | x_{parents(i)}^{(m)}}$$
$$= \sum_{i \in V} \sum_{x_{parents(i)}} \sum_{x_i} N_{x_i, x_{parents(i)}} \log \theta_{x_i | x_{parents(i)}}$$

 $N_{x_i,x_{parents(i)}}$ is the number of times ($x_i, x_{parents(i)}$) was observed in the training set

$$\log l(\theta) = \sum_{m} \sum_{i \in V} \log \theta_{x_i^{(m)} | x_{parents(i)}^{(m)}}$$
$$= \sum_{i \in V} \sum_{m} \log \theta_{x_i^{(m)} | x_{parents(i)}^{(m)}}$$
$$= \sum_{i \in V} \sum_{x_{parents(i)}} \sum_{x_i} N_{x_i, x_{parents(i)}} \log \theta_{x_i | x_{parents(i)}}$$

Fix $x_{parents(i)}$ solve for $\theta_{x_i|x_{parents(i)}}$ for all x_i (on the board)

$$\theta_{x_i | x_{parents(i)}} = \frac{N_{x_i, x_{parents(i)}}}{\sum_{x'_i} N_{x'_i, x_{parents(i)}}} = \frac{N_{x_i, x_{parents(i)}}}{N_{x_{parents(i)}}}$$

- This is just the empirical conditional probability distribution
 - Worked out nicely because of the factorization of the joint distribution
- Same as MLE for naive Bayes and HMMs (which are both BNs)

- The previous slides have assumed that we are essentially given the structure (i.e., the DAG) of the network that we would like to learn
 - This may not be the case in practice: we may only be given samples and must learn both the parameters and the structure of the underlying network
 - But how do we decide which structures are better than others?

• The MLE of the conditional probability tables was given by the empirical probabilities

Α	В	С	D
0	0	1	0
0	0	1	1
0	1	0	0
1	0	0	1
0	0	1	1

• The MLE of the conditional probability tables was given by the empirical probabilities

Α	В	С	D
0	0	1	0
0	0	1	1
0	1	0	0
1	0	0	1
0	0	1	1

			Α	В	P(B A)
Α	Р	(A)	0	0	3/4
0	4	l/5	0	1	1/4
1	1	./5	1	0	1
			1	1	0
В	D	P(D B)	Α	С	P(C A)
0	0	1/4	0	0	1/4
0	1	3/4	0	1	3/4
1	0	1	1	0	1
1		-			0

• The MLE of the conditional probability tables was given by the empirical probabilities

			Α	В	P(B A)
Α	F	P(A)	0	0	3/4
0		4/5	0	1	1/4
1		1/5	1	0	1
			1	1	0
Α	D	P(D A)	Α	С	P(C A)
A 0	D 0	P(D A) 1/2	A 0	С 0	P(C A) 1/4
A 0 0	D 0 1	P(D A) 1/2 1/2	A 0 0	C 0 1	P(C A) 1/4 3/4
A 0 0 1	D 0 1 0	P(D A) 1/2 1/2 0	A 0 0 1	C 0 1 0	P(C A) 1/4 3/4 1

Α	В	С	D
0	0	1	0
0	0	1	1
0	1	0	0
1	0	0	1
0	0	1	1

• Which model should be preferred?

• Which model should be preferred?

Which one has the highest log-likelihood given the data?

• Which model should be preferred?

Which one has the highest log-likelihood given the data?

- Determining the structure that maximizes the log-likelihood is not too difficult
 - A complete DAG always maximizes the log-likelihood!
 - This almost certainly results in overfitting
- Alternative is to attempt to learn simple structures
 - Optimize the log-likelihood over simple networks

- Suppose that we want to find the best tree-structured BN that represents a given joint probability distribution
 - Find the tree-structured BN that maximizes the likelihood
- Let's consider the log-likelihood of a fixed tree *T*
 - Assume that the edges are directed so that each node has exactly one parent

For a fixed tree:

$$\max_{\theta} \log l(\theta, T) = \sum_{i \in V(T)} \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_{\text{parent}(i)}}}$$
$$= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} + \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_i} N_{x_{\text{parent}(i)}}} \right]$$
$$= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left[\sum_{(i,j) \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right]$$

For a fixed tree:

$$\max_{\theta} \log l(\theta, T) = \sum_{i \in V(T)} \sum_{x_{parent(i)}} \sum_{x_i} N_{x_i, x_{parent(i)}} \log \frac{N_{x_i, x_{parent(i)}}}{N_{x_{parent(i)}}}$$
$$= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} + \sum_{x_{parent(i)}} \sum_{x_i} N_{x_i, x_{parent(i)}} \log \frac{N_{x_i, x_{parent(i)}}}{N_{x_i} N_{x_{parent(i)}}} \right]$$
$$= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left[\sum_{i, j \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right]$$

Doesn't depend on the selected tree!

For a fixed tree:

$$\begin{aligned} \max_{\theta} \log l(\theta, T) &= \sum_{i \in V(T)} \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_{\text{parent}(i)}}} \\ &= \sum_{i \in V(T)} \left[\sum_{x_i} N_{x_i} \log N_{x_i} + \sum_{x_{\text{parent}(i)}} \sum_{x_i} N_{x_i, x_{\text{parent}(i)}} \log \frac{N_{x_i, x_{\text{parent}(i)}}}{N_{x_i} N_{x_{\text{parent}(i)}}} \right] \\ &= \left[\sum_{i \in V} \sum_{x_i} N_{x_i} \log N_{x_i} \right] + \left[\sum_{(i,j) \in E(T)} \sum_{x_i, x_j} N_{x_i, x_j} \log \frac{N_{x_i, x_j}}{N_{x_i} N_{x_j}} \right] \\ \end{aligned}$$
This is the (empirical) mutual information, usually

UTD

denoted $I(x_i; x_j)$

• To maximize the log-likelihood, it then suffices to choose the tree *T* that maximizes

$$\max_{T} \sum_{i,j} I(x_i; x_j)$$

- This problem can be solved by finding the maximum weight spanning tree in the complete graph with edge weight w_{ij} given by the mutual information over the edge (i, j)
 - Greedy algorithm works: at each step, pick the largest remaining edge that does not form a cycle when added to the already selected edges

- To use this technique for learning, we simply compute the mutual information for each edge using the empirical probability distributions and then find the max-weight spanning tree
- As a result, we can learn tree-structured BNs in polynomial time
 - Can we generalize this to all DAGs?

Chow-Liu Trees: Example

• Edge weights correspond to empirical mutual information for the earlier samples

Chow-Liu Trees: Example

• Edge weights correspond to empirical mutual information for the earlier samples

Chow-Liu Trees: Example

• Any directed tree (with one parent per node) over these edges maximizes the log-likelihood

- Why doesn't the direction matter?

