

CS 6375 Machine Learning

Nicholas Ruozzi University of Texas at Dallas

Slides adapted from David Sontag and Vibhav Gogate

Course Info.

- Instructor: Nicholas Ruozzi
 - Office: ECSS 3.409
 - Office hours: Tues. 11am-12pm
- TA: ?
 - Office hours and location ?
- Course website: www.utdallas.edu/~nrr150130/cs6375/2015fa/

Prerequisites

- CS 5343: Algorithm Analysis and Data Structures
- Comfort with mathematics
 - Basic probability
 - Linear algebra
 - Eigenvalues, eigenvectors, matrices, vectors, etc.
 - Multivariate calculus
 - Derivatives, integration, gradients, Lagrange multipliers, etc.
- If you aren't comfortable with any of these, you should brush up

Grading

- 5-6 problem sets (50%)
 - See collaboration policy on the web
 - Mix of theory and programming (in MATLAB)
 - Available and turned in on eLearning
 - Approximately one assignment every two weeks
- Midterm Exam (20%)
- Final Exam (30%)

-subject to change-

Course Topics

- Dimensionality reduction
 - PCA
 - Matrix Factorizations
- Learning
 - Supervised, unsupervised, active, reinforcement, ...
 - Learning theory: PAC learning, VC dimension
 - SVMs & kernel methods
 - Decision trees, k-NN, ...
 - Parameter estimation: Bayesian methods, MAP estimation, maximum likelihood estimation, expectation maximization, ...
 - Clustering: k-means & spectral clustering
- Graphical models
 - Neural networks
 - Bayesian networks: naïve Bayes
 - MRFs
- Statistical methods
 - Boosting, bagging, bootstrapping
 - Sampling
- Ranking & Collaborative Filtering

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E."

- Tom Mitchell

Types of Learning

- Supervised
 - The training data includes the desired output
- Unsupervised
 - The training data does not include the desired output
- Semi-supervised
 - Some training data comes with the desired output
- Active learning
 - Semi-supervised learning where the algorithm can ask for the correct outputs for specifically chosen data points
- Reinforcement learning
 - The learner interacts with the world via allowable actions which change the state of the world and result in rewards
 - The learner attempts to maximize rewards through trial and error

Supervised Learning

• Input: $(x_1, y_1), \dots, (x_n, y_n)$

 $-x_i$ is the i^{th} data item and y_i is the i^{th} label

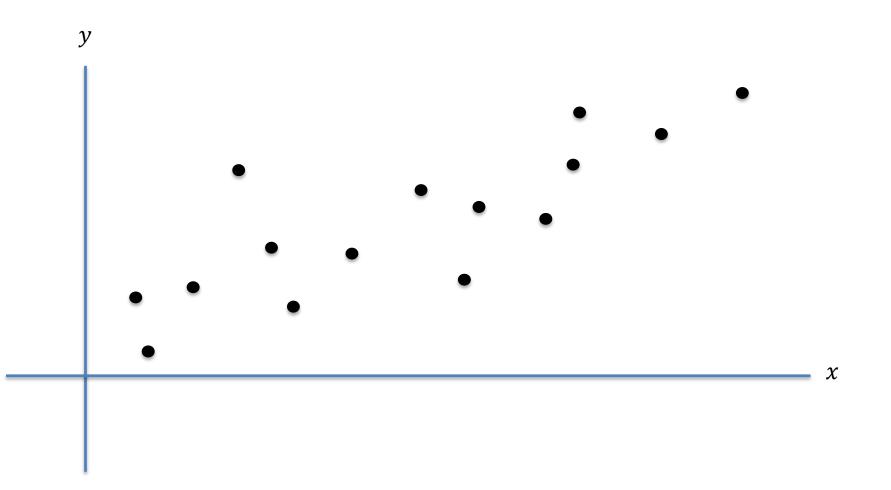
- Goal: find a function f such that $f(x_i)$ is a "good approximation" to y_i
 - Can use it to predict *y* values for previously unseen *x* values

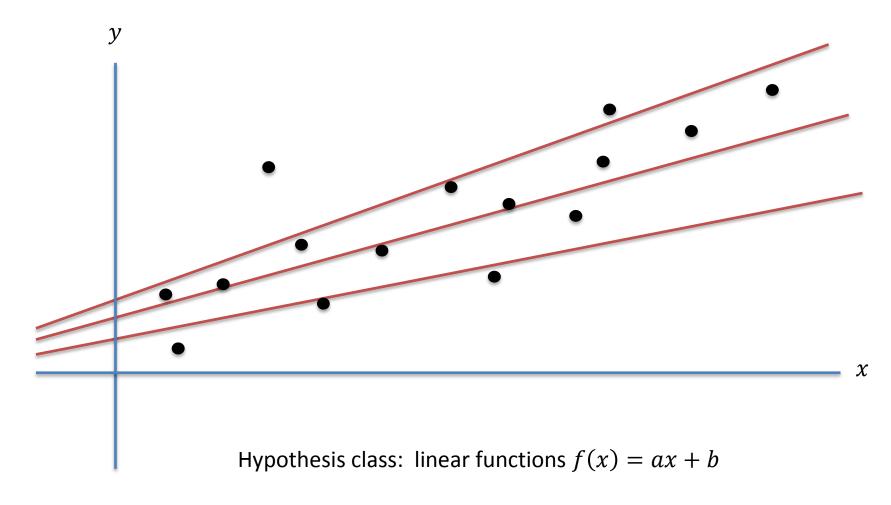
Examples of Supervised Learning

- Spam email detection
- Handwritten digit recognition
- Stock market prediction
- More?

Supervised Learning

- Hypothesis space: set of allowable functions $f: X \to Y$
- Goal: find the "best" element of the hypothesis space
 - How do we measure the quality of f?





How do we measure the quality of the approximation?

• In typical regression applications, measure the fit using a squared loss function

$$L(f, y_i) = (f(x_i) - y_i)^2$$

- Want to minimize the average loss on the training data
- For linear regression, the learning problem is then

$$\min_{a,b} \frac{1}{n} \sum_{i} (ax_i + b - y_i)^2$$

• For an unseen data point, x, the learning algorithm predicts f(x)

$$\min_{a,b} \frac{1}{n} \sum_{i} (ax_i + b - y_i)^2$$

• How do we find the optimal *a* and *b*?

$$\min_{a,b} \frac{1}{n} \sum_{i} (ax_i + b - y_i)^2$$

- How do we find the optimal *a* and *b*?
 - Solution 1: take derivatives and solve (there is a closed form solution!)
 - Solution 2: use gradient descent

$$\min_{a,b} \frac{1}{n} \sum_{i} (ax_i + b - y_i)^2$$

- How do we find the optimal *a* and *b*?
 - Solution 1: take derivatives and solve (there is a closed form solution!)
 - Solution 2: use gradient descent
 - This approach is much more likely to be useful for general loss functions

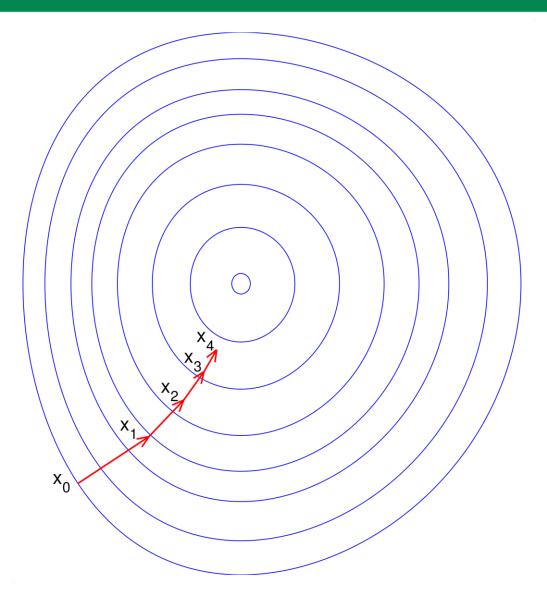
Gradient Descent

- Iterative method to minimize a differentiable function f
- Pick an initial point x_0
- Iterate until convergence

$$x_{t+1} = x_t - \gamma_t \nabla f(x_t)$$

where γ_t is the t^{th} step size

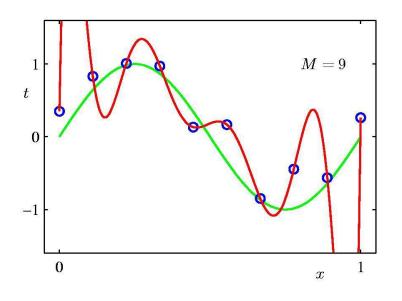
Gradient Descent



source: Wikipedia

- What if we enlarge the hypothesis class?
 - Quadratic functions
 - -k degree polynomials
- Can we always learn better with a larger hypothesis class?

- What if we enlarge the hypothesis class?
 - Quadratic functions
 - -k degree polynomials
- Can we always learn better with a larger hypothesis class?



- What if we enlarge the hypothesis class?
 - Quadratic functions
 - -k degree polynomials
- Can we always learn better with a larger hypothesis class?
 - Larger hypothesis space always decreases the cost function, but this does NOT necessarily mean better predictive performance
 - This phenomenon is known as overfitting
 - Ideally, we would select the simplest hypothesis consistent with the observed data

Binary Classification

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function $f: X \to \{0, 1\}$
- As an example:

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	у
1	0	0	1	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

How do we pick the hypothesis space?

How do we find the best *f* in this space?

Binary Classification

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function $f: X \to \{0, 1\}$
- As an example:

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	у
1	0	0	1	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

How many functions with three binary inputs and one binary output are there?

Binary Classification

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	у
	0	0	0	?
1	0	0	1	0
2	0	1	0	1
	0	1	1	?
	1	0	0	?
	1	0	1	?
3	1	1	0	1
4	1	1	1	0

 2^8 possible functions

2⁴ are consistent with the observations

How do we choose the best one?

What if the observations are noisy?

Challenges in ML

- How to choose the right hypothesis space?
 - Number of factors influence this decision: difficulty of learning over the chosen space, how expressive the space is
- How to evaluate the quality of our learned hypothesis?
 - Prefer "simpler" hypotheses (to prevent overfitting)
 - Want the outcome of learning to generalize to unseen data
- How do we find the best hypothesis?
 - This can be an NP-hard problem!
 - Need fast, scalable algorithms if they are to be applicable to realworld scenarios

