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Announcements

• Homework 1 is now available online

• Join the Piazza discussion group

• Reminder:  my office hours are 11am-12pm on Tuesdays



Binary Classification

• Input 𝑥(1), 𝑦1 , … , (𝑥(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ𝑚 and 𝑦𝑖 ∈ {−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated 

sign (either +/- corresponding to 0/1)

• An example with 𝑚 = 2
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What If the Data Isn‘t Separable?
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Adding Features

• The idea:

– Given the observations 𝑥(1), … , 𝑥(𝑛), construct a feature vector 

𝜙(𝑥)

– Use 𝜙 𝑥(1) , … , 𝜙 𝑥(𝑛) instead of 𝑥(1), … , 𝑥(𝑛) in the 

learning algorithm

– Goal is to choose 𝜙 so that 𝜙 𝑥(1) , … , 𝜙 𝑥(𝑛) are linearly 

separable

– Learn linear separators of the form 𝑤𝑇𝜙 𝑥 (instead of 𝑤𝑇𝑥)



Adding Features

• Sometimes it is convenient to group the bias together with 

the weights

• To do this

– Let 𝜙 𝑥1, 𝑥2 =
𝑥1
𝑥2
1

and  𝑤 =

𝑤1

𝑤2

𝑏
,

– This gives 

 𝑤𝑇𝜙 𝑥1, 𝑥2 = 𝑤1𝑥1 +𝑤2𝑥2 + 𝑏 = 𝑤𝑇𝑥 + 𝑏



Support Vector Machines
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• How can we decide between perfect classifiers?
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• Define the margin to be the distance of the closest data 

point to the classifier



• Support vector machines (SVMs)

• Choose the classifier with the largest margin

– Has good practical and theoretical performance

Support Vector Machines
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• In 𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑇𝑥 + 𝑏 = 0

with 𝑤 ∈ ℝ𝑛, 𝑏 ∈ ℝ

• The vector 𝑤 is sometimes called the normal vector of the 

hyperplane

Some Geometry

𝑤𝑇𝑥 + 𝑏 = 0

𝑤



• In 𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑇𝑥 + 𝑏 = 0

• Note that this equation is scale invariant for any scalar 𝑐

𝑐 ⋅ 𝑤𝑇𝑥 + 𝑏 = 0

Some Geometry

𝑤𝑇𝑥 + 𝑏 = 0

𝑤



• The distance between a point 𝑦 and a hyperplane 𝑤𝑇 +
𝑏 = 0 is the length of the vector perpendicular to the line 

through the point 𝑦

𝑦 − 𝑧 = 𝑦 − 𝑧
𝑤

𝑤

Some Geometry

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦



• By scale invariance, we can assume that 𝑐 = 1

• The maximum margin is always attained by choosing 

𝑤𝑇𝑥 + 𝑏 = 0 so that it is equidistant from the closest 

data point classified as +1 and the closest data point 

classified as -1

Scale Invariance

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦

𝑤𝑇𝑥 + 𝑏 = 𝑐



• We want to maximize the margin subject to the constraints 

that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1

• But how do we compute the size of the margin?

Scale Invariance

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦

𝑤𝑇𝑥 + 𝑏 = 𝑐 𝑤𝑇𝑥 + 𝑏 = −𝑐



Putting it all together

𝑦 − 𝑧 = 𝑦 − 𝑧
𝑤

𝑤

and

𝑤𝑇𝑦 + 𝑏 = 1
𝑤𝑇𝑧 + 𝑏 = 0

Some Geometry

𝑤𝑇 𝑦 − 𝑧 = 1

and

𝑤𝑇 𝑦 − 𝑧 = 𝑦 − 𝑧 𝑤

which gives

𝑦 − 𝑧 = 1/ 𝑤

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦

𝑤𝑇𝑥 + 𝑏 = 1 𝑤𝑇𝑥 + 𝑏 = −1



SVMs

• This analysis yields the following optimization problem

max
𝑤

1

𝑤

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1, for all 𝑖

• Or, equivalently,

min
𝑤

𝑤 2

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1, for all 𝑖



SVMs

min
𝑤

𝑤 2

such that

𝑦𝑖 𝑤
𝑇𝑥 𝑖 + 𝑏 ≥ 1, for all 𝑖

• This is a standard quadratic programming problem

– Falls into the class of convex optimization problems

– Can be solved with many specialized optimization tools (e.g., 

quadprog() in MATLAB)



SVMs

• Where does the name come from?

– The set of all data points such that 𝑦𝑖(𝑤
𝑇𝑥(𝑖) + 𝑏) = 1 are 

called support vectors

𝑤𝑇𝑥 + 𝑏 = 0

𝑧

𝑦

𝑤𝑇𝑥 + 𝑏 = 1 𝑤𝑇𝑥 + 𝑏 = −1



SVMs

• What if the data isn’t linearly separable?

– Use feature vectors

• What if we want to do more than just binary classification 

(i.e., if 𝑦 ∈ {1,2,3})?

– One versus all:  for each class, compute a linear separator 

between this class and all other classes

– All versus all:  for each pair of classes, compute a linear separator


