Support Vector Machines

Nicholas Ruozzi

University of Texas at Dallas

Announcements

- Homework 1 is now available online
- Join the Piazza discussion group
- Reminder: my office hours are 11am-12pm on Tuesdays

Binary Classification

- Input $\left(x^{(1)}, y_{1}\right), \ldots,\left(x^{(n)}, y_{n}\right)$ with $x_{i} \in \mathbb{R}^{m}$ and $y_{i} \in\{-1,+1\}$
- We can think of the observations as points in \mathbb{R}^{m} with an associated sign (either +/- corresponding to 0/1)
- An example with $m=2$

Binary Classification

- Input $\left(x^{(1)}, y_{1}\right), \ldots,\left(x^{(n)}, y_{n}\right)$ with $x_{i} \in \mathbb{R}^{m}$ and $y_{i} \in\{-1,+1\}$
- We can think of the observations as points in \mathbb{R}^{m} with an associated sign (either +/- corresponding to 0/1)
- An example with $m=2$

What If the Data Isn't Separable?

- Input $\left(x^{(1)}, y_{1}\right), \ldots,\left(x^{(n)}, y_{n}\right)$ with $x_{i} \in \mathbb{R}^{m}$ and $y_{i} \in\{-1,+1\}$
- We can think of the observations as points in \mathbb{R}^{m} with an associated sign (either +/- corresponding to 0/1)
- An example with $m=2$

What If the Data Isn't Separable?

- Input $\left(x^{(1)}, y_{1}\right), \ldots,\left(x^{(n)}, y_{n}\right)$ with $x_{i} \in \mathbb{R}^{m}$ and $y_{i} \in\{-1,+1\}$
- We can think of the observations as points in \mathbb{R}^{m} with an associated sign (either +/- corresponding to 0/1)
- An example with $m=2$

Adding Features

- The idea:
- Given the observations $x^{(1)}, \ldots, x^{(n)}$, construct a feature vector $\phi(x)$
- Use $\phi\left(x^{(1)}\right), \ldots, \phi\left(x^{(n)}\right)$ instead of $x^{(1)}, \ldots, x^{(n)}$ in the learning algorithm
- Goal is to choose ϕ so that $\phi\left(x^{(1)}\right), \ldots, \phi\left(x^{(n)}\right)$ are linearly separable
- Learn linear separators of the form $w^{T} \phi(x)\left(\right.$ instead of $\left.w^{T} x\right)$

Adding Features

- Sometimes it is convenient to group the bias together with the weights
- To do this
- Let $\phi\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}x_{1} \\ x_{2} \\ 1\end{array}\right]$ and $\widetilde{w}=\left[\begin{array}{c}w_{1} \\ w_{2} \\ b\end{array}\right]$,
- This gives

$$
\widetilde{w}^{T} \phi\left(x_{1}, x_{2}\right)=w_{1} x_{1}+w_{2} x_{2}+b=w^{T} x+b
$$

Support Vector Machines

- How can we decide between perfect classifiers?

Support Vector Machines

- How can we decide between perfect classifiers?

Support Vector Machines

- Define the margin to be the distance of the closest data point to the classifier

Support Vector Machines

- Support vector machines (SVMs)

- Choose the classifier with the largest margin
- Has good practical and theoretical performance

Some Geometry

- In n dimensions, a hyperplane is a solution to the equation

$$
w^{T} x+b=0
$$

with $w \in \mathbb{R}^{n}, b \in \mathbb{R}$

- The vector w is sometimes called the normal vector of the hyperplane

Some Geometry

- In n dimensions, a hyperplane is a solution to the equation

$$
w^{T} x+b=0
$$

- Note that this equation is scale invariant for any scalar c

$$
c \cdot\left(w^{T} x+b\right)=0
$$

Some Geometry

- The distance between a point y and a hyperplane $w^{T}+$ $b=0$ is the length of the vector perpendicular to the line through the point y

$$
y-z=\|y-z\| \frac{w}{\|w\|}
$$

Scale Invariance

- By scale invariance, we can assume that $c=1$
- The maximum margin is always attained by choosing $w^{T} x+b=0$ so that it is equidistant from the closest data point classified as +1 and the closest data point classified as -1

Scale Invariance

- We want to maximize the margin subject to the constraints that

$$
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1
$$

- But how do we compute the size of the margin?

Some Geometry

Putting it all together

$$
y-z=\|y-z\| \frac{w}{\|w\|}
$$

and

$$
\begin{aligned}
& w^{T} y+b=1 \\
& w^{T} z+b=0
\end{aligned}
$$

$$
w^{T}(y-z)=1
$$

and

$$
w^{T}(y-z)=\|y-z\|\|w\|
$$

which gives

$$
\|y-z\|=1 /\|w\|
$$

SVMs

- This analysis yields the following optimization problem

$$
\max _{w} \frac{1}{\|w\|}
$$

such that

$$
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1, \text { for all } i
$$

- Or, equivalently,

$$
\min _{w}\|w\|^{2}
$$

such that

$$
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1, \text { for all } i
$$

SVMs

$$
\min _{w}\|w\|^{2}
$$

such that

$$
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1, \text { for all } i
$$

- This is a standard quadratic programming problem
- Falls into the class of convex optimization problems
- Can be solved with many specialized optimization tools (e.g., quadprog() in MATLAB)

SVMs

- Where does the name come from?
- The set of all data points such that $y_{i}\left(w^{T} x^{(i)}+b\right)=1$ are called support vectors

SVMs

- What if the data isn't linearly separable?
- Use feature vectors
- What if we want to do more than just binary classification (i.e., if $y \in\{1,2,3\}$)?
- One versus all: for each class, compute a linear separator between this class and all other classes
- All versus all: for each pair of classes, compute a linear separator

