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Supervised Learning

• Input:  labelled training data

– i.e., data plus desired output

• Assumption:  there exists a function 𝑓 that maps data 

items 𝑥 to their correct labels

• Goal:  construct an approximation to 𝑓
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Today

• We’ve been focusing on linear separators

– Relatively easy to learn (using standard techniques)

– Easy to picture, but not clear if data will be separable

• Next two lectures we’ll focus on other hypothesis spaces

– Decision trees

– Nearest neighbor classification
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Application:  Medical Diagnosis

• Suppose that you go to your doctor with flu-like symptoms

– How does your doctor determine if you have a flu that 

requires medical attention?
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Application:  Medical Diagnosis

• Suppose that you go to your doctor with flu-like symptoms

– How does your doctor determine if you have a flu that 

requires medical attention?

– Check a list of symptoms:

• Do you have a fever over 100.4 degrees Fahrenheit?

• Do you have a sore throat or a stuffy nose?

• Do you have a dry cough?

5



Application:  Medical Diagnosis

• Just having some symptoms is not enough, you should also 

not have symptoms that are not consistent with the flu

• For example,

– If you have a fever over 100.4 degrees Fahrenheit?

– And you have a sore throat or a stuffy nose?

• You probably do not have the flu (most likely just a cold)
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Application:  Medical Diagnosis

• In other words, you doctor will perform a series of tests and 

ask a series of questions in order to determine the 

likelihood of you having a severe case of the flu

• This is a method of coming to a diagnosis (i.e., a 

classification of your condition)

• We can view this decision making process as a tree
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Decision Trees

• A tree in which each internal (non-leaf) node tests the value 

of a particular feature

• Each leaf node specifies a class label (in this case whether 

or not you should play tennis)
8



Decision Trees

• Features:  (Outlook, Humidity, Wind)

• Classification is performed root to leaf

– The feature vector (Sunny, Normal, Strong) would be classified as 

a yes instance
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Decision Trees

• Can have continuous features too

– Internal nodes for continuous features correspond to 

thresholds
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Decision Trees

• Decision trees divide the feature space into axis parallel 

rectangles
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Decision Trees

• Decision trees divide the feature space into axis parallel 

rectangles
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Decision Trees

• Decision trees divide the feature space into axis parallel 

rectangles
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Decision Trees

• Decision trees divide the feature space into axis parallel 

rectangles
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Decision Trees

• Decision trees divide the feature space into axis parallel 

rectangles
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Decision Trees

• Worst case decision tree may require exponentially many 

nodes
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Decision Tree Learning

• Basic decision tree building algorithm:

– Pick some feature/attribute

– Partition the data based on the value of this attribute

– Recurse over each new partition
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Decision Tree Learning

• Basic decision tree building algorithm:

– Pick some feature/attribute (how to pick the “best”?)

– Partition the data based on the value of this attribute

– Recurse over each new partition (when to stop?)

We’ll focus on the discrete case first (i.e., each feature takes 

a value in some finite set)
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Decision Trees

• What functions can be represented by decision trees?

Every function can be represented by a sufficiently 

complicated decision tree

• Are decision trees unique?
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Decision Trees

• What functions can be represented by decision trees?

– Every function can be represented by a sufficiently 

complicated decision tree

• Are decision trees unique?

– No, many different decision trees are possible
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Choosing the Best Attribute

• Because the complexity of storage and classification 

increases with the size of the tree, should prefer smaller 

trees

– Simplest models that explain the data are usually 

preferred over more complicated ones

– This is an NP-hard problem

– Instead, use a greedy heuristic based approach to pick 

the best attribute at each stage
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Choosing the Best Attribute

𝒙𝟏 𝒙𝟐 𝒚

1 1 +

1 0 +

1 1 +

1 0 +

0 1 +

0 0 −

0 1 −

0 0 −
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𝑥1, 𝑥2 ∈ {0,1}

Which attribute should you split on?

𝑥1 𝑥2

𝑦 = −: 0
𝑦 = +: 4

𝑦 = −: 3
𝑦 = +: 1

𝑦 = −: 1
𝑦 = +: 3

𝑦 = −: 2
𝑦 = +: 2

0 011



Choosing the Best Attribute

𝒙𝟏 𝒙𝟐 𝒚

1 1 +

1 0 +

1 1 +

1 0 +

0 1 +

0 0 −

0 1 −

0 0 −
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𝑥1, 𝑥2 ∈ {0,1}

Which attribute should you split on?

𝑥1 𝑥2

𝑦 = −: 0
𝑦 = +: 4

𝑦 = −: 3
𝑦 = +: 1

𝑦 = −: 1
𝑦 = +: 3

𝑦 = −: 2
𝑦 = +: 2

0 011

Can think of these counts as 
probability distributions over the 

labels:  if 𝑥 = 1, the probability that 
𝑦 = + is equal to 1



Choosing the Best Attribute

• The selected attribute is a good split if we are more 

“certain” about the classification after the split

– If each partition with respect to the chosen attribute has a distinct 

class label, we are completely certain about the classification 

after partitioning

– If the class labels are evenly divided between the partitions, the 

split isn’t very good (we are very uncertain about the label for 

each partition)

– What about other situations?  How do you measure the 

uncertainty of a random process?
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Discrete Probability

• Sample space specifies the set of possible outcomes

– For example, Ω = {H, T} would be the set of possible 

outcomes of a coin flip

• Each element 𝜔 ∈ Ω is associated with a number p 𝜔 ∈ [0,1]
called a probability

 

𝜔∈Ω

𝑝 𝜔 = 1

– For example, a biased coin might have 𝑝 𝐻 = .6 and 𝑝 𝑇 =
.4
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Discrete Probability

• An event is a subset of the sample space

– Let Ω = {1, 2, 3, 4, 5, 6} be the 6 possible outcomes of a dice 

role

– 𝐴 = 1, 5, 6 ⊆ Ω would be the event that the dice roll comes 

up as a one, five, or six

• The probability of an event is just the sum of all of the outcomes that 

it contains

– 𝑝 𝐴 = 𝑝 1 + 𝑝 5 + 𝑝(6)
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Independence

• Two events A and B are independent if 

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑃(𝐵)

Let's suppose that we have a fair die:  𝑝 1 = … = 𝑝 6 = 1/6

If 𝐴 = {1, 2, 5} and 𝐵 = {3, 4, 6} are 𝐴 and 𝐵 indpendent?

1

2

5
3

6

4

𝐴 𝐵
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Independence

• Two events A and B are independent if 

𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑃(𝐵)

Let's suppose that we have a fair die:  𝑝 1 = … = 𝑝 6 = 1/6

If 𝐴 = {1, 2, 5} and 𝐵 = {3, 4, 6} are 𝐴 and 𝐵 indpendent?

1

2

5
3

6

4

𝐴 𝐵

No!

𝑝 𝐴 ∩ 𝐵 = 0 ≠
1

4
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Independence

• Now, suppose that Ω = { 1,1 , 1,2 ,… , 6,6 } is the set of all 

possible rolls of two unbiased dice

• Let 𝐴 = { 1,1 , 1,2 , 1,3 ,… , 1,6 } be the event that the first 

die is a one and let 𝐵 = { 1,6 , 2,6 ,… , 6,6 } be the event that 

the second die is a six

• Are 𝐴 and 𝐵 independent?

(1,1)

1,2

(1,3)

(1,4)

(1,5)
(1,6)

(3,6)

2,6

(4,6)

(5,6)

(6,6)

𝐴 𝐵
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Independence

• Now, suppose that Ω = { 1,1 , 1,2 ,… , 6,6 } is the set of all 

possible rolls of two unbiased dice

• Let 𝐴 = { 1,1 , 1,2 , 1,3 ,… , 1,6 } be the event that the first 

die is a one and let 𝐵 = { 1,6 , 2,6 ,… , 6,6 } be the event that 

the second die is a six

• Are 𝐴 and 𝐵 independent?

(1,1)
𝐴 𝐵

Yes!

𝑝 𝐴 ∩ 𝐵 =
1

36
=
1

6
∗
1

6

1,2

(1,3)

(1,4)

(1,5)
(1,6)

(3,6)

2,6

(4,6)

(5,6)

(6,6)
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Conditional Probability

• The conditional probability of an event 𝐴 given an event 𝐵
with 𝑝 𝐵 > 0 is defined to be

𝑝 𝐴 𝐵 =
𝑝 𝐴 ∩ 𝐵

𝑃 𝐵

• This is the probability of the event 𝐴 ∩ 𝐵 over the sample space 

Ω′ = 𝐵

• Some properties:

–  𝜔∈Ω𝑝(𝜔|𝐵) = 1

– If 𝐴 and 𝐵 are independent, then 𝑝 𝐴 𝐵 = 𝑝(𝐴)
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Discrete Random Variables

• A discrete random variable, 𝑋, is a function from the state space Ω
into a discrete space 𝐷

– For each 𝑥 ∈ 𝐷,

𝑝 𝑋 = 𝑥 ≡ 𝑝 𝜔 ∈ Ω ∶ 𝑋 𝜔 = 𝑥

is the probability that 𝑋 takes the value 𝑥

– 𝑝(𝑋) defines a probability distribution

•  𝑥∈𝐷 𝑝(𝑋 = 𝑥) = 1

• Random variables partition the state space into disjoint events
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 = ?

– 𝑝 𝑋 = 8 = ? 
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• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 =
𝟏
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– 𝑝 𝑋 = 8 = ? 
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝 be the uniform probability distribution over all possible 

outcomes in Ω

• Let 𝑋 𝜔 be equal to the sum of the value showing on the pair of dice 

in the outcome 𝜔

– 𝑝 𝑋 = 2 =
𝟏

𝟑𝟔

– 𝑝 𝑋 = 8 =
𝟓

𝟑𝟔
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Discrete Random Variables

• We can have vectors of random variables as well

𝑋 𝜔 = [𝑋1 𝜔 ,… , 𝑋𝑛 𝜔 ]

• The joint distribution is 𝑝 𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛 is

𝑝(𝑋1 = 𝑥1 ∩⋯∩ 𝑋𝑛 = 𝑥𝑛)

typically written as

𝑝(𝑥1, … , 𝑥𝑛)

• Because 𝑋𝑖 = 𝑥𝑖 is an event, all of the same rules from basic 

probability apply
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Entropy

• A standard way to measure uncertainty of a random 

variable is to use the entropy

𝐻 𝑌 = − 

𝑌=𝑦

𝑝 𝑌 = 𝑦 log 𝑝(𝑌 = 𝑦)

• You showed (I hope) on the homework that entropy is 

maximized for uniform distributions

• Entropy is minimized for distributions that place all their 

probability on a single outcome
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Entropy of a Coin Flip
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𝐻(𝑋)

𝑝

𝑋 = 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑜𝑓 𝑐𝑜𝑖𝑛 𝑓𝑙𝑖𝑝 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 ℎ𝑒𝑎𝑑𝑠 𝑝



Conditional Entropy

• We can also compute the entropy of a random variable 

conditioned on a different random variable 

𝐻 𝑌 𝑋 = − 

𝑥

𝑝(𝑋 = 𝑥) 

𝑦

𝑝 𝑌 = 𝑦 𝑋 = 𝑥 log 𝑝(𝑌 = 𝑦|𝑋 = 𝑥)

– This is called the conditional entropy

– This is the amount of information needed to quantify the 

random variable 𝑌 given the random variable 𝑋
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Information Gain

• Using entropy to measure uncertainty, we can greedily 

select an attribute that guarantees the largest expected 

decrease in entropy (with respect to the empirical 

partitions)

𝐼𝐺 𝑋 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

– Called information gain

– Larger information gain corresponds to less uncertainty 

about 𝑌 given 𝑋

• Note that 𝐻 𝑌 𝑋 ≤ 𝐻(𝑌)
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Decision Tree Learning

• Basic decision tree building algorithm:

– Pick the feature/attribute with the highest information 

gain

– Partition the data based on the value of this attribute

– Recurse over each new partition
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Choosing the Best Attribute

𝒙𝟏 𝒙𝟐 𝒚

1 1 +

1 0 +

1 1 +

1 0 +

0 1 +

0 0 −

0 1 −

0 0 −
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𝑥1, 𝑥2 ∈ {0,1}

Which attribute should you split on?

𝑥1 𝑥2

𝑦 = −: 0
𝑦 = +: 4

𝑦 = −: 3
𝑦 = +: 1

𝑦 = −: 1
𝑦 = +: 3

𝑦 = −: 2
𝑦 = +: 2

0 011

What is the information 
gain in each case?



Choosing the Best Attribute

𝒙𝟏 𝒙𝟐 𝒚

1 1 +

1 0 +

1 1 +

1 0 +

0 1 +

0 0 −

0 1 −

0 0 −
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𝑥1, 𝑥2 ∈ {0,1}

Which attribute should you split on?

𝑥1 𝑥2

𝑦 = −: 0
𝑦 = +: 4

𝑦 = −: 3
𝑦 = +: 1

𝑦 = −: 1
𝑦 = +: 3

𝑦 = −: 2
𝑦 = +: 2

0 011

𝐻 𝑌 = −
5

8
log
5

8
−
3

8
log
3

8
𝐻 𝑌 𝑋1 = .5 −0 log 0 − 1 log 1 + .5 −.75 log .75 − .25 log .25
𝐻 𝑌 𝑋2 = .5 −.5 log .5 − .5 log .5 + .5 −.75 log .75 − .25 log .25

𝐻 𝑌 − 𝐻 𝑌 𝑋1 − 𝐻 𝑌 + 𝐻 𝑌 𝑋2 = −log .5 > 0 Should split on 𝑥1



When to Stop

• If the current set is “pure” (i.e., has a single label in the 

output), stop

• If you run out of attributes to recurse on, even if the current 

data set isn’t pure, stop and use a majority vote

• If a partition contains no data items, nothing to recurse on
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Decision Trees

• Because of speed/ease of implementation, decision trees 

are quite popular

– Can be used for regression too!

• Decision trees will always overfit!

– It is always possible to obtain zero training error on the 

input data with a deep enough tree (if there is no noise 

in the labels)

– Solution?
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