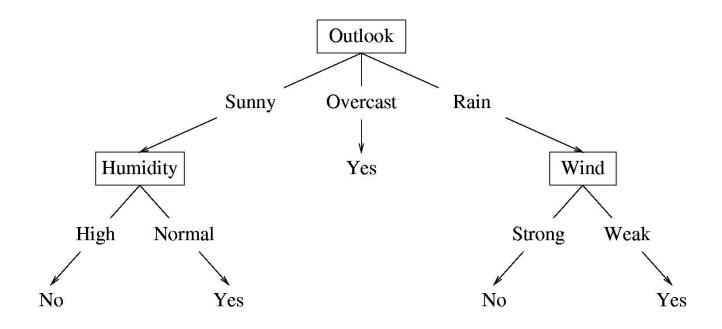


Nicholas Ruozzi
University of Texas at Dallas

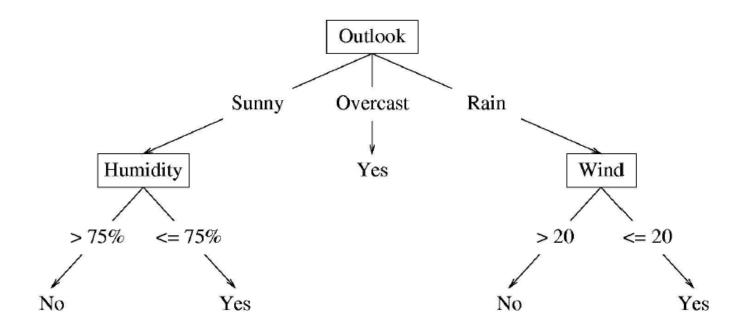
Decision Trees



Decision Tree Learning

- Basic decision tree building algorithm:
 - Pick the feature/attribute with the highest information gain
 - Partition the data based on the value of this attribute
 - Recurse over each new partition

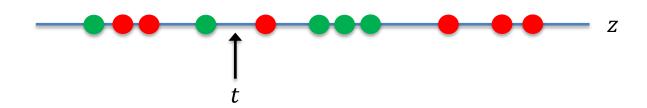
Decision Trees



- For continuous attributes, use threshold splits
 - Split the tree into $x_k < t$ and $x_k \ge t$
 - Can split on the same attribute multiple times on the same path down the tree
- How to pick the threshold t?
 - Try every possible t

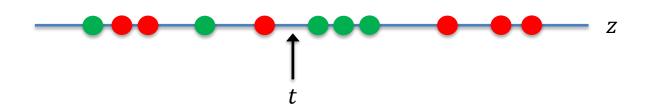
How many possible t are there?

• Sort the data according to the k^{th} attribute: $z_1 > z_2 > \cdots > z_n$



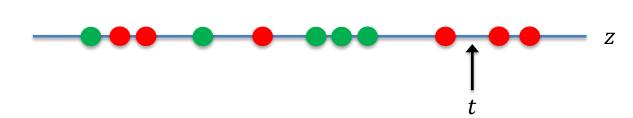
- Only a finite number of thresholds make sense
 - Just split in between each consecutive pair of data points (e.g., splits of the form $t = \frac{z_i + z_{i+1}}{2}$)

• Sort the data according to the k^{th} attribute: $z_1 > z_2 > \cdots > z_n$



- Only a finite number of thresholds make sense
 - Just split in between each consecutive pair of data points (e.g., splits of the form $t = \frac{z_i + z_{i+1}}{2}$)

• Sort the data according to the k^{th} attribute: $z_1 > z_2 > \cdots > z_n$



Does it make sense for a threshold to appear between two x's with the same class label?

- Only a finite number of thresholds make sense
 - Just split in between each consecutive pair of data points (e.g., splits of the form $t = \frac{z_i + z_{i+1}}{2}$)

- Compute the information gain of each threshold
- Let X: t denote splitting with threshold t and compute

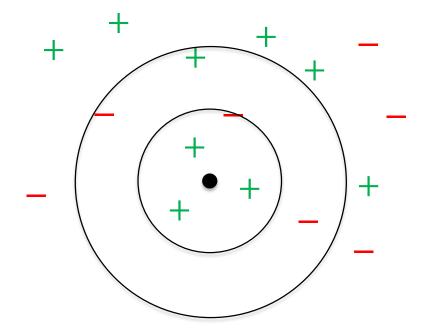
$$H(Y|X:t) = -p(X < t) \sum_{y} p(Y = y|X < t) \log p(Y = y|X < t) +$$

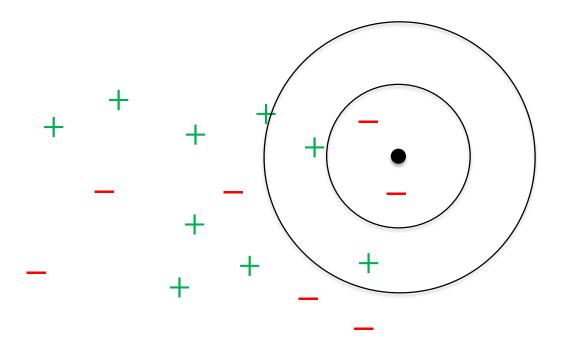
$$-p(X \ge t) \sum_{y} p(Y = y|X \ge t) \log p(Y = y|X \ge t)$$

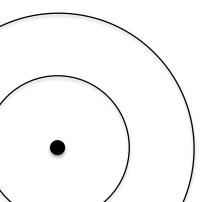
 In the learning algorithm, maximize over all attributes and all possible thresholds of the real-valued attributes

$$\max_t H(Y) - H(Y|X;t)$$
, for real-valued X $H(Y) - H(Y|X)$, for discrete X

- Learning
 - Store all training examples
- Classifying a new point x'
 - Find the training example $(x^{(i)}, y_i)$ such that $x^{(i)}$ is closest (for some notion of close) to x'
 - Classify x' with the label y_i



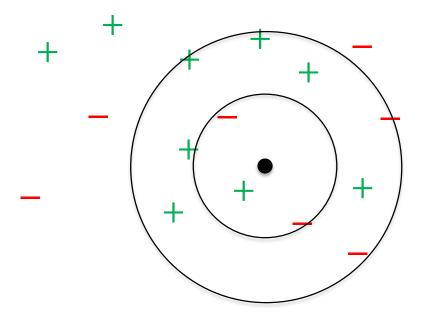




k-nearest neighbor methods look at the k closest points in the training set and take a majority vote (should choose k to be odd)



k-nearest neighbor methods look at the k closest points in the training set and take a majority vote (should choose k to be odd)



- Applies to data sets with points in \mathbb{R}^d
 - Best for large data sets with only a few (< 20) attributes
- Advantages
 - Learning is easy
 - Can learn complicated decision boundaries
- Disadvantages
 - Classification is slow (need to keep the entire training set around)
 - Easily fooled by irrelevant attributes

Practical Challenges

- How to choose the right measure of closeness?
 - Euclidean distance is popular, but many other possibilities
- How to pick k?
 - Too small and the estimates are noisy, too large and the accuracy suffers
- What if the nearest neighbor is really far away?

Choosing the Distance

- Euclidean distance makes sense when each of the features is roughly on the same scale
 - If the features are very different (e.g., height and age), then Euclidean distance makes less sense as height would be less significant than age simply because age has a larger range of possible values
 - To correct for this, feature vectors are often scaled by the standard deviation over the training set

Normalization

Sample mean

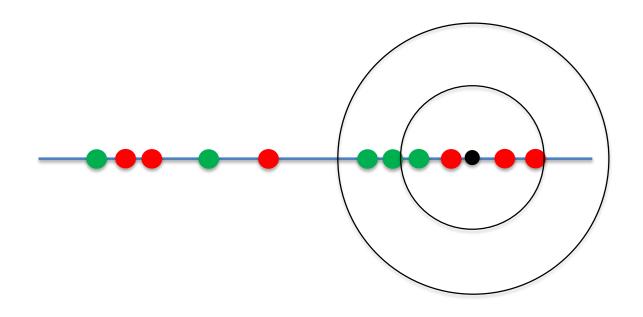
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x^{(i)}$$

Sample variance

$$\hat{\sigma}_k^2 = \frac{1}{n} \sum_{i=1}^n \left(x_k^{(i)} - \bar{x}_k \right)^2$$

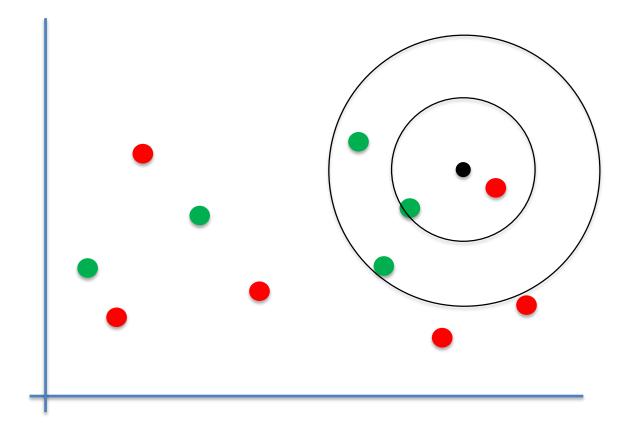
Irrelevant Attributes

Consider the nearest neighbor problem in one dimension



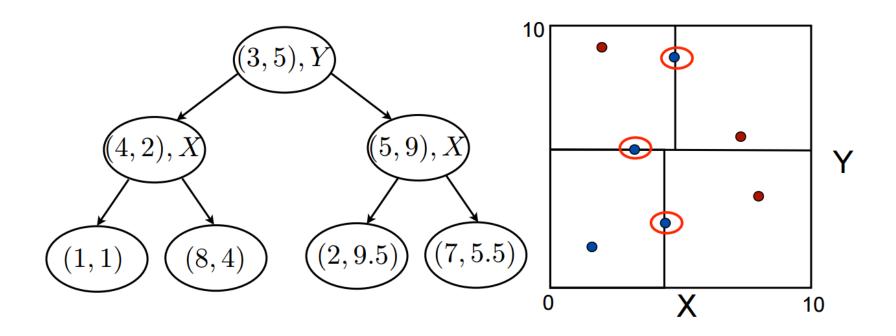
Irrelevant Attributes

Now, add a new attribute that is just random noise...

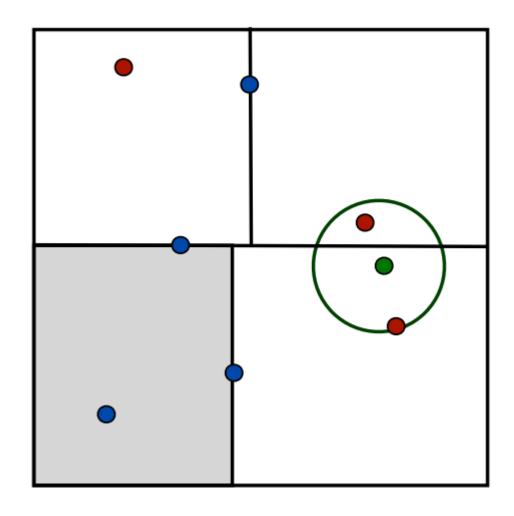


- In order to do classification, we can compute the distances between all points in the training set and the point we are trying to classify
 - If the data is d-dimensional, this takes O(nd) time for Euclidean distance
 - It is possible to do better if we do some preprocessing on the training data

- k-d trees provide a data structure that can help simplify the classification task by constructing a tree that partitions the search space
 - Starting with the entire training set, choose some dimension, i
 - Select an element of the training data whose i^{th} dimension has the median value among all elements of the training set
 - Divide the training set into two pieces: depending on whether their i^{th} attribute is smaller or larger than the median
 - Repeat this partitioning process on each of the two new pieces separately



- Start at the top of the k-d tree and traverse it to a leaf of the tree based on where the point to classify should fall
- Once a leaf node is reached, selected to be the current closest point to x'
- Follow the path, in the opposite direction, from the leaf to the root
 - If the current node along the path is closer to x' than the current closest point it becomes the new closest point
 - Before moving up the tree, the algorithm checks if there could be any points in the opposite partition that are closer to x' than the current closest point
 - If so, then closest point in that subtree is computed recursively
 - Otherwise, the parent of the current node along the path becomes the new current node



- By design, the constructed k-d tree is "bushy"
 - The idea is that if new points to classify are evenly distributed throughout the space, then the expected cost of classification is approximately $O(d \log n)$ operations
- Summary
 - k-NN is fast and easy to implement
 - No training required
 - Can be good in practice (where applicable)

