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Last Time

• Probably approximately correct (PAC)

– The only reasonable expectation of a learner is that with 

high probability it learns a close approximation to the 

target concept

– Specify two small parameters, 0 < 𝜖, 𝛿 < 1

• 𝜖 is the error of the approximation

• (1 − 𝛿) is the probability that, given 𝑚 i.i.d. samples, our 

learning algorithm produces a classifier with error at most 𝜖
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Learning Theory

• We use the observed data in order to learn a classifier

• Want to know how far the learned classifier deviates from the 

(unknown) underlying distribution

– With too few samples, we will with high probability learn a 

classifier whose true error is quite high even though it may be a 

perfect classifier for the observed data

– As we see more samples, we pick a classifier from the hypothesis 

space with low training error & hope that it also has low true error 

• Want this to be true with high probability – can we bound how 

many samples that we need?

3



Haussler, 1988

• What we proved last time:

Theorem: For a finite hypothesis space, 𝐻, with 𝑚 i.i.d. 

samples, and 0 < 𝜖 < 1, the probability that any 

consistent classifier has true error larger than 𝜖 is at most 

𝐻 𝑒−𝜖𝑚

• We can turn this into a sample complexity bound
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Sample Complexity

• Let 𝛿 be an upper bound on the desired probability of not 

𝜖-exhausting the sample space

– The probability that the version space is not 𝜖-
exhausted is at most 𝐻 𝑒−𝜖𝑚 ≤ 𝛿

– Solving for 𝑚 yields

𝑚 ≥ −
1

𝜖
log
𝛿

𝐻

= log |𝐻| + log
1

𝛿
/𝜖
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Generalizations

• How do we handle the case that there is no consistent 

classifier?

– Pick the hypothesis with the lowest error on the training 

set, bound?

• What do we do if the hypothesis space isn’t finite?

– Infinite sample complexity?

– Need a way to measure the complexity of the space that 

isn’t based on its size
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Chernoff Bounds

• Chernoff bound:  Suppose 𝑌1, … , 𝑌𝑚 are i.i.d. random 

variables taking values in {0, 1} such that 𝐸𝑝 𝑌𝑖 = 𝑦.  

For 𝜖 > 0,

𝑝 𝑦 −
1

𝑚
 

𝑖

𝑌𝑖 ≥ 𝜖 ≤ 𝑒
−2𝑚𝜖2
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Chernoff Bounds

• For ℎ ∈ 𝐻, let 𝑍𝑖
ℎ be an indicator random variable that is 

one if ℎmisclassifies the 𝑖𝑡ℎ data point

𝑝 𝑍𝑖
ℎ = 1 = 

𝑥,𝑦

𝑝 𝑥, 𝑦 1ℎ 𝑥 ≠𝑦 = 𝜖ℎ

• Applying Chernoff bound to 𝑍1
ℎ, … , 𝑍𝑚

ℎ gives

𝑝 𝜖ℎ −
1

𝑚
 

𝑖

𝑍𝑖
ℎ ≥ 𝜖 ≤ 𝑒−2𝑚𝜖

2
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Chernoff Bounds

• For ℎ ∈ 𝐻, let 𝑍𝑖
ℎ be an indicator random variable that is 

one if ℎmisclassifies the 𝑖𝑡ℎ data point

𝑝 𝑍𝑖
ℎ = 1 = 

𝑥,𝑦

𝑝 𝑥, 𝑦 1ℎ 𝑥 ≠𝑦 = 𝜖ℎ

• Applying Chernoff bound to 𝑍1
ℎ, … , 𝑍𝑚

ℎ gives

𝑝 𝜖ℎ −
1

𝑚
 

𝑖

𝑍𝑖
ℎ ≥ 𝜖 ≤ 𝑒−2𝑚𝜖

2
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PAC Bounds

Theorem: For a finite hypothesis space H, 𝑚 i.i.d. samples, 

and 0 < 𝜖 < 1, the probability that true error of any of the 

best classifiers (i.e., lowest training error) is larger than its 

training error plus 𝜖 is at most |𝐻|𝑒−2𝑚𝜖
2

• Sample complexity (for desired 𝛿 ≥ |𝐻|𝑒−2𝑚𝜖
2

)

𝑚 ≥ log 𝐻 + log
1

𝛿
/2𝜖2
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿, 

then with probability (1 − 𝛿), for all ℎ ∈ 𝐻

𝜖ℎ ≤ 𝜖ℎ
𝑡𝑟𝑎𝑖𝑛 +

1

2𝑚
log |𝐻| + log

1

𝛿

– For small |𝐻|

• High bias (may not be enough hypotheses to choose from)

• Low variance
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿, 

then with probability (1 − 𝛿), for all ℎ ∈ 𝐻

𝜖ℎ ≤ 𝜖ℎ
𝑡𝑟𝑎𝑖𝑛 +

1

2𝑚
log |𝐻| + log

1

𝛿

– For large |𝐻|

• Low bias (lots of good hypotheses)

• High variance
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VC Dimension

• Our analysis for the finite case was based on |𝐻|

– This translates into infinite sample complexity

– We can derive a different notion of complexity for infinite 

hypothesis spaces by considering only the number of 

points that can be correctly classified by some member 

of 𝐻
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VC Dimension

• How many points in 1-D can be correctly classified by a 

linear separator?

– 2 points:

14

Yes!



VC Dimension

• How many points in 1-D can be correctly classified by a 

linear separator?

– 2 points:

15

Yes!



VC Dimension
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linear separator?

– 2 points:

16

Yes!



VC Dimension

• How many points in 1-D can be correctly classified by a 

linear separator?

– 3 points:

17

Yes!



VC Dimension

• How many points in 1-D can be correctly classified by a 

linear separator?

– 3 points:
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VC Dimension

• How many points in 1-D can be correctly classified by a 

linear separator?

– 3 points:

– 3 points and up: for any collection of three or more there 

is always some choice of pluses and minuses such that 

that the points cannot be classified with a linear 

separator
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VC Dimension

• A set of points is shattered by a hypothesis space 𝐻 if and 

only if for every partition of the set of points into positive 

and negative examples, there exists some consistent ℎ ∈
𝐻

• The Vapnik–Chervonenkis (VC) dimension of 𝐻 over inputs 

from 𝑋 is the size of the largest  finite subset of 𝑋 shattered 

by 𝐻
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VC Dimension

• Common misconception:

– VC dimension is determined by the largest shattered set 

of points, not the highest number such that all sets of 

points that size can be shattered
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VC Dimension

• Common misconception:

– VC dimension is determined by the largest shattered set 

of points, not the highest number such that all sets of 

points that size can be shattered
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Can be shattered by a line (no 
matter the labels), so VC 

dimension is at least 3



VC Dimension

• What is the VC dimension of 2-D space under linear 

separators?

– It is at least three from the last slide

– Can some set of four points be shattered?
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VC Dimension

• What is the VC dimension of 2-D space under linear 

separators?

– It is at least three from the last slide

– Can some set of four points be shattered?
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NO!  This means that 
the VC dimension is at 
most 3



VC Dimension

• There exists a linear separator that can shatter any set of 

size 𝑑 + 1 in a 𝑑 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 space, but not 𝑑 + 2

• The larger the subset of 𝑋 that can be shattered, the more 

expressive the hypothesis space is

• If arbitrarily large finite subsets of 𝑋 can be shattered, then 

𝑉𝐶 𝐻 = ∞
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Axis Parallel Rectangles

• Let 𝑋 be the set of all points in ℝ2

• Let 𝐻 be the set of all axis parallel rectangles in 2-D

– What is 𝑉𝐶(𝐻)?
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Axis Parallel Rectangles

• Let 𝑋 be the set of all points in ℝ2

• Let 𝐻 be the set of all axis parallel rectangles in 2-D

– 𝑉𝐶 𝐻 ≥ 4
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Axis Parallel Rectangles

• Let 𝑋 be the set of all points in ℝ2

• Let 𝐻 be the set of all axis parallel rectangles in 2-D

– 𝑉𝐶 𝐻 = 4

– A rectangle can contain at most 4 extreme points, the 

fifth point must be contained within the rectangle 

defined by these points
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PAC Bounds with VC Dimension

• VC dimension can be used to construct PAC bounds

𝑚 ≥
1

𝜖
4 log
2

𝛿
+ 8 ⋅ 𝑉𝐶 𝐻 log

13

𝜖

• With probability at least (1 − 𝛿) every ℎ ∈ 𝐻 satisfies

𝜖ℎ ≤ 𝜖ℎ
𝑡𝑟𝑎𝑖𝑛 +

1

𝑚
𝑉𝐶 𝐻 ln

2𝑚

𝑉𝐶 𝐻
+ 1 + ln

4

𝛿

• These bounds (and the preceding discussion) only work for 

binary classification, but there are generalizations
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PAC Learning

• Given:

– Set of data 𝑋

– Hypothesis space 𝐻

– Set of target concepts 𝐶

– Training instances from unknown probability distribution 

over 𝑋 of the form (𝑥, 𝑐 𝑥 )

• Goal:

– Learn the target concept 𝑐 ∈ C
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PAC Learning

• Given:

– A concept class 𝐶 over 𝑛 instances from the set 𝑋

– A learner 𝐿 with hypothesis space 𝐻

– Two constants, 𝜖, 𝛿 ∈ (0,
1

2
)

• 𝐶 is said to be PAC learnable by 𝐿 using 𝐻 iff for all 

distributions over 𝑋, learner 𝐿 by sampling 𝑛 instances, 

will with probability at least 1 − 𝛿 output a hypothesis ℎ ∈
H such that

– 𝜖ℎ ≤ 𝜖

– Running time is polynomial in 
1

𝜖
,
1

𝛿
, 𝑛, 𝑠𝑖𝑧𝑒(𝑐)
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