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Last Time

• Variance reduction via bagging

• Generate “new” training data sets by sampling with 
replacement from the empirical distribution

• Learn a classifier for each of the newly sampled sets

• Combine the classifiers for prediction

• Today: how to reduce bias for binary classification problems
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Boosting

• How to translate rules of thumb (i.e., good heuristics) into 
good learning algorithms

• For example, if we are trying to classify email as spam or not 
spam, a good rule of thumb may be that emails containing 
“Nigerian prince” or “Viagara” are likely to be spam most of 
the time
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Boosting

• Freund & Schapire

• Theory for “weak learners” in late 80’s

• Weak Learner: performance on any training set is slightly 
better than chance prediction

• Intended to answer a theoretical question, not as a practical 
way to improve learning

• Tested in mid 90’s using not-so-weak learners

• Works anyway!



PAC Learning

• Given i.i.d samples from an unknown, arbitrary distribution

• “Strong” PAC learning algorithm

• For any distribution with high probability given 
polynomially many samples (and polynomial time) can 
find classifier with arbitrarily small error 

• “Weak” PAC learning algorithm

• Same, but error only needs to be slightly better than 
random guessing (e.g., accuracy only needs to exceed 
50% for binary classification)

• Does weak learnability imply strong learnability?
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Boosting

1. Weight all training samples equally

2. Train model on training set

3. Compute error of model on training set

4. Increase weights on training cases model gets wrong

5. Train new model on re-weighted training set

6. Re-compute errors on weighted training set

7. Increase weights again on cases model gets wrong

Repeat until tired

Final model: weighted prediction of each model



Boosting: Graphical Illustration

ℎ1 𝑥𝑥 ℎ2 𝑥𝑥 ℎ𝑀𝑀(𝑥𝑥)

ℎ 𝑥𝑥 = sign �
𝑚𝑚

𝛼𝛼𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)
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AdaBoost

1. Initialize the data weights 𝑤𝑤1, … ,𝑤𝑤𝑀𝑀 for the first round as 
𝑤𝑤1

1 , … ,𝑤𝑤𝑀𝑀
1 = 1

𝑀𝑀
2. For 𝑡𝑡 = 1, … ,𝑇𝑇

a) Select a classifier ℎ𝑡𝑡 for the 𝑇𝑇𝑡𝑡𝑡 round by minimizing the weighted 
error

𝜖𝜖𝑡𝑡 = �
𝑚𝑚

𝑤𝑤𝑚𝑚
(𝑡𝑡)1𝑡𝑡𝑡 𝑥𝑥 𝑚𝑚 ≠𝑦𝑦(𝑚𝑚)

b) Compute 

𝛼𝛼𝑡𝑡 =
1
2

ln
1 − 𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡

c) Update the weights

𝑤𝑤𝑚𝑚
𝑡𝑡+1 =

𝑤𝑤𝑚𝑚
𝑡𝑡 exp −𝑦𝑦(𝑚𝑚)ℎ𝑡𝑡 𝑥𝑥(𝑚𝑚) 𝛼𝛼𝑡𝑡

2 𝜖𝜖𝑡𝑡 ⋅ 1 − 𝜖𝜖𝑡𝑡
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AdaBoost

1. Initialize the data weights 𝑤𝑤1, … ,𝑤𝑤𝑀𝑀 for the first round as 
𝑤𝑤1

1 , … ,𝑤𝑤𝑀𝑀
1 = 1

𝑀𝑀
2. For 𝑡𝑡 = 1, … ,𝑇𝑇

a) Select a classifier ℎ𝑡𝑡 for the 𝑇𝑇𝑡𝑡𝑡 round by minimizing the weighted 
error

𝜖𝜖𝑡𝑡 = �
𝑚𝑚

𝑤𝑤𝑚𝑚
(𝑡𝑡)1𝑡𝑡𝑡 𝑥𝑥 𝑚𝑚 ≠𝑦𝑦(𝑚𝑚)

b) Compute 

𝛼𝛼𝑡𝑡 =
1
2

ln
1 − 𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡

c) Update the weights

𝑤𝑤𝑚𝑚
𝑡𝑡+1 =

𝑤𝑤𝑚𝑚
𝑡𝑡 exp −𝑦𝑦(𝑚𝑚)ℎ𝑡𝑡 𝑥𝑥(𝑚𝑚) 𝛼𝛼𝑡𝑡

2 𝜖𝜖𝑡𝑡 ⋅ 1 − 𝜖𝜖𝑡𝑡

Weighted number 
of incorrect 
classifications of 
the 𝑡𝑡𝑡𝑡𝑡 classifier 
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AdaBoost

1. Initialize the data weights 𝑤𝑤1, … ,𝑤𝑤𝑀𝑀 for the first round as 
𝑤𝑤1

1 , … ,𝑤𝑤𝑀𝑀
1 = 1

𝑀𝑀
2. For 𝑡𝑡 = 1, … ,𝑇𝑇

a) Select a classifier ℎ𝑡𝑡 for the 𝑇𝑇𝑡𝑡𝑡 round by minimizing the weighted 
error

𝜖𝜖𝑡𝑡 = �
𝑚𝑚

𝑤𝑤𝑚𝑚
(𝑡𝑡)1𝑡𝑡𝑡 𝑥𝑥 𝑚𝑚 ≠𝑦𝑦(𝑚𝑚)

b) Compute 

𝛼𝛼𝑡𝑡 =
1
2

ln
1 − 𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡

c) Update the weights

𝑤𝑤𝑚𝑚
𝑡𝑡+1 =

𝑤𝑤𝑚𝑚
𝑡𝑡 exp −𝑦𝑦(𝑚𝑚)ℎ𝑡𝑡 𝑥𝑥(𝑚𝑚) 𝛼𝛼𝑡𝑡

2 𝜖𝜖𝑡𝑡 ⋅ 1 − 𝜖𝜖𝑡𝑡

𝜖𝜖𝑡𝑡 → 0
𝛼𝛼𝑡𝑡 → ∞
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AdaBoost

1. Initialize the data weights 𝑤𝑤1, … ,𝑤𝑤𝑀𝑀 for the first round as 
𝑤𝑤1

1 , … ,𝑤𝑤𝑀𝑀
1 = 1

𝑀𝑀
2. For 𝑡𝑡 = 1, … ,𝑇𝑇

a) Select a classifier ℎ𝑡𝑡 for the 𝑇𝑇𝑡𝑡𝑡 round by minimizing the weighted 
error

𝜖𝜖𝑡𝑡 = �
𝑚𝑚

𝑤𝑤𝑚𝑚
(𝑡𝑡)1𝑡𝑡𝑡 𝑥𝑥 𝑚𝑚 ≠𝑦𝑦(𝑚𝑚)

b) Compute 

𝛼𝛼𝑡𝑡 =
1
2

ln
1 − 𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡

c) Update the weights

𝑤𝑤𝑚𝑚
𝑡𝑡+1 =

𝑤𝑤𝑚𝑚
𝑡𝑡 exp −𝑦𝑦(𝑚𝑚)ℎ𝑡𝑡 𝑥𝑥(𝑚𝑚) 𝛼𝛼𝑡𝑡

2 𝜖𝜖𝑡𝑡 ⋅ 1 − 𝜖𝜖𝑡𝑡

𝜖𝜖𝑚𝑚 → .5
𝛼𝛼𝑚𝑚 → 0
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AdaBoost

1. Initialize the data weights 𝑤𝑤1, … ,𝑤𝑤𝑀𝑀 for the first round as 
𝑤𝑤1

1 , … ,𝑤𝑤𝑀𝑀
1 = 1

𝑀𝑀
2. For 𝑡𝑡 = 1, … ,𝑇𝑇

a) Select a classifier ℎ𝑡𝑡 for the 𝑇𝑇𝑡𝑡𝑡 round by minimizing the weighted 
error

𝜖𝜖𝑡𝑡 = �
𝑚𝑚

𝑤𝑤𝑚𝑚
(𝑡𝑡)1𝑡𝑡𝑡 𝑥𝑥 𝑚𝑚 ≠𝑦𝑦(𝑚𝑚)

b) Compute 

𝛼𝛼𝑡𝑡 =
1
2

ln
1 − 𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡

c) Update the weights

𝑤𝑤𝑚𝑚
𝑡𝑡+1 =

𝑤𝑤𝑚𝑚
𝑡𝑡 exp −𝑦𝑦(𝑚𝑚)ℎ𝑡𝑡 𝑥𝑥(𝑚𝑚) 𝛼𝛼𝑡𝑡

2 𝜖𝜖𝑡𝑡 ⋅ 1 − 𝜖𝜖𝑡𝑡

𝜖𝜖𝑚𝑚 → 1
𝛼𝛼𝑚𝑚 → −∞
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AdaBoost

1. Initialize the data weights 𝑤𝑤1, … ,𝑤𝑤𝑀𝑀 for the first round as 
𝑤𝑤1

1 , … ,𝑤𝑤𝑀𝑀
1 = 1

𝑀𝑀
2. For 𝑡𝑡 = 1, … ,𝑇𝑇

a) Select a classifier ℎ𝑡𝑡 for the 𝑇𝑇𝑡𝑡𝑡 round by minimizing the weighted 
error

𝜖𝜖𝑡𝑡 = �
𝑚𝑚

𝑤𝑤𝑚𝑚
(𝑡𝑡)1𝑡𝑡𝑡 𝑥𝑥 𝑚𝑚 ≠𝑦𝑦(𝑚𝑚)

b) Compute 

𝛼𝛼𝑡𝑡 =
1
2

ln
1 − 𝜖𝜖𝑡𝑡
𝜖𝜖𝑡𝑡

c) Update the weights

𝑤𝑤𝑚𝑚
𝑡𝑡+1 =

𝑤𝑤𝑚𝑚
𝑡𝑡 exp −𝑦𝑦(𝑚𝑚)ℎ𝑡𝑡 𝑥𝑥(𝑚𝑚) 𝛼𝛼𝑡𝑡

2 𝜖𝜖𝑡𝑡 ⋅ 1 − 𝜖𝜖𝑡𝑡
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Example

• Consider a classification problem where vertical and 
horizontal lines (and their corresponding half spaces) are the 
weak learners
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ℎ1
𝜖𝜖1 = .3
𝛼𝛼1 = .42
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+

+

−
−

−

−
−

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 2

ℎ2
𝜖𝜖2 = .21
𝛼𝛼2 = .65

+
+

+
+

+

− −

−

−
−

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 3

ℎ3

𝜖𝜖3 = .14
𝛼𝛼3 = .92
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Final Hypothesis

+
+

+

+

+

−
−

−

−
−

𝐹𝐹𝐹𝐹𝑅𝑅𝐹𝐹𝐹𝐹 𝐻𝐻𝑦𝑦𝐻𝐻𝑅𝑅𝑡𝑡ℎ𝐻𝐻𝐻𝐻𝐹𝐹𝐻𝐻

ℎ 𝑥𝑥 = 𝐻𝐻𝐹𝐹𝑠𝑠𝑅𝑅 .42 +.65 +.92
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Boosting

Theorem:  Let 𝑍𝑍𝑡𝑡 = 2 𝜖𝜖𝑡𝑡 ⋅ 1 − 𝜖𝜖𝑡𝑡 and 𝛾𝛾𝑡𝑡 = 1
2
− 𝜖𝜖𝑡𝑡.

1
𝑀𝑀
�
𝑚𝑚

1𝑡 𝑥𝑥(𝑚𝑚) ≠𝑦𝑦(𝑚𝑚) ≤�
𝑡𝑡=1

𝑇𝑇

𝑍𝑍𝑡𝑡 = �
𝑡𝑡=1

𝑇𝑇

1 − 4𝛾𝛾𝑡𝑡2

So, even if all of the 𝛾𝛾’s are small positive numbers (i.e., can 
always find a weak learner), the training error goes to zero as 𝑇𝑇
increases 
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Margins & Boosting

• We can see that training error goes down, but what about test 
error?

• That is, does boosting help us generalize better?

• To answer this question, we need to look at how confident we 
are in our predictions

• How can we measure this?
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Margins & Boosting

• We can see that training error goes down, but what about test 
error?

• That is, does boosting help us generalize better?

• To answer this question, we need to look at how confident we 
are in our predictions

• Margins!
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Margins & Boosting

• Intuition:  larger margins lead to better generalization (same 
as SVMs)

• Theorem: with high probability, boosting increases the size of 
the margins

• Note:  boosting does NOT maximize the margin, so it could 
still result poor generalization performance
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Boosting Performance



Boosting as Optimization

• AdaBoost can be interpreted as a coordinate descent method 
for a specific loss function!

• Let ℎ1, … ,ℎ𝑇𝑇 be the set of all weak learners

• Exponential loss

ℓ 𝛼𝛼1, … ,𝛼𝛼𝑇𝑇 = �
𝑚𝑚

exp −𝑦𝑦(𝑚𝑚) ⋅�
𝑡𝑡

𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥(𝑚𝑚))

• Convex in 𝛼𝛼𝑡𝑡
• AdaBoost minimizes this exponential loss
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Coordinate Descent

• Minimize the loss with respect to a single component of 𝛼𝛼, 
let’s pick 𝛼𝛼𝑡𝑡′

𝑅𝑅ℓ
𝑅𝑅𝛼𝛼𝑡𝑡′

= −�
𝑚𝑚

𝑦𝑦(𝑚𝑚)ℎ𝑡𝑡′ 𝑥𝑥 𝑚𝑚 exp −𝑦𝑦(𝑚𝑚) ⋅�
𝑡𝑡

𝛼𝛼𝑡𝑡ℎ𝑡𝑡 𝑥𝑥 𝑚𝑚

= �
𝑚𝑚:𝑡𝑡𝑡′ 𝑥𝑥

𝑚𝑚 =𝑦𝑦(𝑚𝑚)

− exp −𝛼𝛼𝑡𝑡′ exp −𝑦𝑦(𝑚𝑚) ⋅ �
𝑡𝑡≠𝑡𝑡′

𝛼𝛼𝑡𝑡ℎ𝑡𝑡 𝑥𝑥 𝑚𝑚

+ �
𝑚𝑚:𝑡𝑡𝑡′ 𝑥𝑥

𝑚𝑚 ≠𝑦𝑦(𝑚𝑚)

exp(𝛼𝛼𝑡𝑡′) exp −𝑦𝑦(𝑚𝑚) ⋅ �
𝑡𝑡≠𝑡𝑡′

𝛼𝛼𝑡𝑡ℎ𝑡𝑡 𝑥𝑥 𝑚𝑚

= 0
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Coordinate Descent

• Solving for 𝛼𝛼𝑡𝑡′

𝛼𝛼𝑡𝑡′ =
1
2

ln
∑𝑚𝑚:𝑡𝑡𝑡′ 𝑥𝑥

𝑚𝑚 =𝑦𝑦(𝑚𝑚) exp −𝑦𝑦(𝑚𝑚) ⋅ ∑𝑡𝑡≠𝑡𝑡′ 𝛼𝛼𝑡𝑡ℎ𝑡𝑡 𝑥𝑥 𝑚𝑚

∑𝑚𝑚:𝑡𝑡𝑡′ 𝑥𝑥
𝑚𝑚 ≠𝑦𝑦(𝑚𝑚) exp −𝑦𝑦(𝑚𝑚) ⋅ ∑𝑡𝑡≠𝑡𝑡′ 𝛼𝛼𝑡𝑡ℎ𝑡𝑡 𝑥𝑥 𝑚𝑚

• This is similar to the adaBoost update!

• The only difference is that adaBoost tells us in which order
we should update the variables
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AdaBoost as a Coordinate Descent

• Start  with 𝛼𝛼 = 0,𝑤𝑤𝑚𝑚 = 1/𝑀𝑀

• Let 𝑟𝑟𝑚𝑚 = exp −𝑦𝑦(𝑚𝑚) ⋅ ∑𝑡𝑡≠𝑡𝑡′ 𝛼𝛼𝑡𝑡ℎ𝑡𝑡 𝑥𝑥 𝑚𝑚 = 1

• Choose 𝑡𝑡𝑡 to minimize

�
𝑚𝑚:𝑡𝑡𝑡′ 𝑥𝑥

𝑚𝑚 ≠𝑦𝑦(𝑚𝑚)

𝑟𝑟𝑚𝑚 = 𝑀𝑀�
𝑚𝑚

𝑤𝑤𝑚𝑚
1 1𝑡𝑡𝑡′ 𝑥𝑥(𝑚𝑚) ≠𝑦𝑦(𝑚𝑚)

• For this choice of 𝑡𝑡𝑡, minimizing the exp. loss with respect to 𝛼𝛼𝑡𝑡′ gives

𝛼𝛼𝑡𝑡′ =
1
2

ln
𝑀𝑀∑𝑚𝑚𝑤𝑤𝑚𝑚

1 1𝑡𝑡𝑡′ 𝑥𝑥(𝑚𝑚) =𝑦𝑦(𝑚𝑚)

𝑀𝑀∑𝑚𝑚𝑤𝑤𝑚𝑚
1 1𝑡𝑡𝑡′ 𝑥𝑥(𝑀𝑀) ≠𝑦𝑦(𝑚𝑚)

=
1
2

ln
1 − 𝜖𝜖1
𝜖𝜖1

• Repeating this procedure with new values of 𝛼𝛼 yields adaBoost
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AdaBoost as Optimization

• Could derive an adaBoost algorithm for other types of loss 
functions!

• Important to note

• Exponential loss is convex, but not strict
(may have multiple global optima)

• In practice, adaBoost can perform quite differently than 
other methods for minimizing this loss (e.g., gradient 
descent)
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Boosting in Practice

• Our description of the algorithm assumed that a set of 
possible hypotheses was given

• In practice, the set of hypotheses can be built as the 
algorithm progress

• Example:  build new decision tree at each iteration for the 
data set in which the 𝑚𝑚𝑡𝑡𝑡 example has weight 𝑤𝑤𝑚𝑚

(𝑡𝑡)

• When computing information gain, compute the empirical 
probabilities using the weights
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Boosting vs. Bagging

• Bagging doesn’t work well with stable models

• Boosting might still help

• Boosting might hurt performance on noisy datasets

• Bagging doesn’t have this problem

• On average, boosting improves classification accuracy more 
than bagging, but it is also more common for boosting to hurt 
performance

• Bagging is easier to parallelize

• Both ensemble methods have added overhead required to 
train multiple classifiers



Boosting Beyond Binary Classification

• Slightly more complicated

• Want to select weak learners that are better than random 
guessing, but there are many different ways to do better 
than random

• A hypothesis space is boostable if there exists a baseline 
measure, that is slightly better than random, such that you 
can always find a hypothesis that outperforms the baseline

• Can be boostable with respect to some baselines but not 
others
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