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Announcements

• Midterm (next Wednesday in class)

• Closed book, closed notes, etc. (just you and a pencil)

• Try to arrive as early as possible so as to maximize your 
exam taking time

• Covers everything up to the end of boosting

• Be prepared for theoretical questions! A practice exam will 
be made available on eLearning.

• The exam is worth a significant percentage of the grade, 
talk to other students and use Piazza to make sure that you 
are prepared!

2



Clustering

Clustering systems:

• Unsupervised learning

• Requires data, but no labels

• Detect patterns, e.g., in

• Group emails or search results

• Customer shopping patterns

• Useful when don’t know what you’re looking for...

• But often get gibberish
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Clustering

• Want to group together parts of a dataset that are close 
together in some metric

• Useful for finding the important parameters/features of a 
dataset
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Clustering

• Intuitive notion of clustering is a somewhat ill-defined 
problem

• Identification of clusters depends on the scale at which we 
perceive the data
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Clustering

• Input:  a collection of points 𝑥𝑥(1), … , 𝑥𝑥(𝑚𝑚) ∈ ℝ𝑛𝑛, an integer 𝑘𝑘

• Output:  A partitioning of the input points into 𝑘𝑘 sets that 
minimizes some metric of closeness
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𝑘𝑘-means Clustering

• Pick an initial set of 𝑘𝑘 means (usually at random)

• Repeat until the clusters do not change:

• Partition the data points, assigning each data point to a 
cluster based on the mean that is closest to it

• Update the cluster means so that the 𝑖𝑖𝑡𝑡𝑡 mean is equal to 
the average of all data points assigned to cluster 𝑖𝑖
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𝑘𝑘-means clustering: Example

Pick 𝑘𝑘 random points 
as cluster centers 
(means)
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𝑘𝑘-means clustering: Example

Iterative Step 1:

Assign data instances 
to closest cluster 
center
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𝑘𝑘-means clustering: Example
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Iterative Step 2:

Change the cluster 
center to the average of 
the assigned points



𝑘𝑘-means clustering: Example

Repeat until 
convergence
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𝑘𝑘-means clustering: Example
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𝑘𝑘-means clustering: Example
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𝑘𝑘-means clustering: Example
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𝑘𝑘-Means for Segmentation

𝑘𝑘 = 2 Original
Goal of Segmentation is to 
partition an image into 
regions each of which has 
reasonably homogenous 
visual appearance
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𝑘𝑘-Means for Segmentation

𝑘𝑘 = 2 𝑘𝑘 = 3 K=10 Original
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𝑘𝑘-Means for Segmentation

𝑘𝑘 = 2 𝑘𝑘 = 3 𝑘𝑘 = 10 Original
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𝑘𝑘-means Clustering as Optimization

• Minimize the distance of each input point to the mean of the 
cluster/partition that contains it

min
𝑆𝑆1,…,𝑆𝑆𝑘𝑘

�
𝑖𝑖=1

𝑘𝑘

�
𝑗𝑗∈𝑆𝑆𝑖𝑖

𝑥𝑥(𝑗𝑗) − 𝜇𝜇𝑖𝑖
2

where 
• 𝑆𝑆𝑖𝑖 ⊆ {1, … ,𝑀𝑀} is the 𝑖𝑖𝑡𝑡𝑡 cluster
• 𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗 = ∅ for 𝑖𝑖 ≠ 𝑗𝑗, ∪𝑖𝑖 𝑆𝑆𝑖𝑖 = {1, … ,𝑛𝑛}
• 𝜇𝜇𝑖𝑖 is the centroid of the 𝑖𝑖𝑡𝑡𝑡 cluster
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Exactly minimizing this 
function is NP-hard 
(even for 𝑘𝑘 = 2)



𝑘𝑘-means Clustering

• The k-means clustering algorithm performs a block coordinate 
descent on the objective function

�
𝑖𝑖=1

𝑘𝑘

�
𝑗𝑗∈𝑆𝑆𝑖𝑖

𝑥𝑥(𝑗𝑗) − 𝜇𝜇𝑖𝑖
2

• This is not a convex function:  could get stuck in local minima
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𝑘𝑘-Means as Optimization

• Consider the 𝑘𝑘-means objective function

𝜙𝜙 𝑥𝑥, 𝑆𝑆, 𝜇𝜇 = �
𝑖𝑖=1

𝑘𝑘

�
𝑗𝑗∈𝑆𝑆𝑖𝑖

𝑥𝑥(𝑗𝑗) − 𝜇𝜇𝑖𝑖
2

• Two stages each iteration

• Update cluster assignments: fix means 𝜇𝜇, change assignments 𝑆𝑆

• Update means: fix assignments 𝑆𝑆, change means 𝜇𝜇
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Phase I: Update Assignments

• For each point, re-assign to closest mean, 𝑥𝑥(𝑗𝑗) ∈ 𝑆𝑆𝑖𝑖
if

𝑗𝑗 ∈ arg min
𝑖𝑖

𝑥𝑥(𝑗𝑗) − 𝜇𝜇𝑖𝑖
2

• Can only decrease 𝜙𝜙 as the sum of the distances of 
all points to their respective means must decrease

𝜙𝜙 𝑥𝑥, 𝑆𝑆, 𝜇𝜇 = �
𝑖𝑖=1

𝑘𝑘

�
𝑗𝑗∈𝑆𝑆𝑖𝑖

𝑥𝑥(𝑗𝑗) − 𝜇𝜇𝑖𝑖
2
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Phase II: Update Means

• Move each mean to the average of its 
assigned points

𝜇𝜇𝑖𝑖 = �
𝑗𝑗∈𝑆𝑆𝑖𝑖

𝑥𝑥 𝑗𝑗

𝑆𝑆𝑖𝑖

• Also can only decrease total distance…

• Why?
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Phase II: Update Means

• Move each mean to the average of its 
assigned points

𝜇𝜇𝑖𝑖 = �
𝑗𝑗∈𝑆𝑆𝑖𝑖

𝑥𝑥 𝑗𝑗

𝑆𝑆𝑖𝑖

• Also can only decrease total distance…

• The point 𝑦𝑦 with minimum squared 
Euclidean distance to a set of points is 
their mean
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Initialization

• K-means is sensitive to 
initialization

• It does matter what you pick!

• What can go wrong?
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Initialization

• K-means is sensitive to 
initialization

• It does matter what you pick!

• What can go wrong?

• Various schemes to help alleviate 
this problem:  initialization 
heuristics

29



𝑘𝑘-means Clustering

• Not clear how to figure out the "best" 𝑘𝑘 in advance

• Want to choose 𝑘𝑘 to pick out the interesting clusters, but not to 
overfit the data points 

• Large 𝑘𝑘 doesn't necessarily pick out interesting clusters

• Small 𝑘𝑘 can result in large clusters than can be broken down 
further
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Local Optima
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𝑘𝑘-Means Summary

• Guaranteed to converge

• But not to a global optimum

• Choice of 𝑘𝑘 and initialization can greatly affect the outcome

• Runtime:  𝑂𝑂(𝑘𝑘𝑘𝑘) per iteration

• Popular because it is fast, though there are other clustering 
methods that may be more suitable depending on your data
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Hierarchical Clustering

• Agglomerative clustering
• Incrementally build larger clusters out of smaller clusters

• Algorithm:
• Maintain a set of clusters

• Initially, each instance in its own cluster

• Repeat:

• Pick the two closest clusters

• Merge them into a new cluster

• Stop when there is only one cluster left

• Produces not one clustering, but a family of clusterings
represented by a dendrogram
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Agglomerative Clustering

• How should we define “closest” for clusters with multiple 
elements?

• Many more choices, each produces a different clustering...
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Closest / farthest pair Average of all pairs



Clustering Behavior
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Average

Mouse tumor data from [Hastie]

Farthest Nearest
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