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Eigenvalues

« Aisan eigenvalue of a matrix A € R™" if the linear system
Ax = Ax has at least one non-zero solution

* If Ax = Ax we say that A is an eigenvalue of A with
corresponding eigenvector x

e Could be multiple eigenvectors for the same A4



Eigenvalues of Symmetric Matrices

e If 4 € R™" is symmetric, then it has n linearly independent
eigenvectors vy, ..., v, corresponding to n real eigenvalues

* Moreover, it has n linearly independent orthonormal
eigenvectors
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« v/ v; = 1forall i



Eigenvalues of Symmetric Matrices

e If 4 € R™" is symmetric, then it has n linearly independent
eigenvectors vy, ..., v, corresponding to n real eigenvalues

* A symmetric matrix is positive definite if and only if all of its
eigenvalues are positive

* The orthonormal eigenvectors form a basis of R™ (similar
to the standard coordinate axes)



Examples

 The 2x2 identity matrix has all of its eigenvalues equal to 1 (it

is positive definite) with orthonormal eigenvectors [é] and [(ﬂ

 The matrix [ ] has eigenvalues 0 and 2 with orthonormal
1___11 -
eigenvectors */f and */f
V2. V2]

* The matrix [ ] has eigenvalues 1 and 3 with orthonormal
1'—_12 (1]
eigenvectors */f and ‘/f
V2. V2]




Eigenvalues

e Suppose A € R™™ js symmetric

* Any x € R" can be written as x = ).’ ¢;v; where v4, ..., 1,
are the eigenvectors of A
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* A%x = Jimqg Ay

t,, — \\'n t
* A'x = i=1ﬂ'icivi



Eigenvalues

e Suppose A € R™™ js symmetric

* Anyx € R™ can be written as x = ),;", ¢c;v; Wwhere vy, ..., v,
are the eigenvectors of A

° ¢ = vl-Tx, this is the projection of x along the line given by
v; (assuming that v; is a unit vector)



Eigenvalues of Symmetric Matrices

* Let Q € R™" be the matrix whose i*" columnis v; and D €
R™ ™ be the diagonal matrix such that D;; = A;

« Ax = QDQ"x

* Can throw away some eigenvectors to approximate this
guantity

* For example, let Q;, be the matrix formed by keeping
only the top k eigenvectors and D,, be the diagonal
matrix whose diagonal consists of the top k eigenvalues



Frobenius Norm

 The Frobenius norm is a matrix norm given by

n n
”A”F= ZZ' l]|2

i=1j=1
\

. QkaQ,z is the best rank k approximation of the symmetric
matrix A with respect to the Frobenius norm

QiDr Q) = argmin  ||A— Bl
BER™X Mg t. rank(B)=k



Principal Component Analysis

* Principle component analysis

* Can be used to reduce the dimensionality of the data while
still maintaining a good approximation of the sample mean
and variance

e Can also be used for selecting good features that are
combinations of the input features

* Unsupervised — just finds a good representation of the
data in terms of combinations of the input features
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Principal Component Analysis

* Input a collection of data points sampled from some
distribution x4, ..., x, € R"

e Construct the matrix W € R™P whose it column is
YL
p

Xi

* The matrix WWT is the sample covariance matrix

« WWT is symmetric and positive semidefinite
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Principal Component Analysis

* PCA finds a set of orthogonal vectors that best explain the
variance of the sample covariance matrix

* From our previous discussion, these are exactly the
eigenvectors of WWT

* We can discard the eigenvectors corresponding to small
magnitude eigenvalues to yield an approximation

* Simple algorithm to describe, MATLAB and other
programming languages have built in support for
eigenvector computation
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PCA in Practice

* Forming the matrix WWT can require a lot of memory
(especially if n > p)

* Need a faster way to compute this without forming the
matrix explicitly

* Typical approach: use the singular value decomposition
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Singular Value Decomposition (SVD)

* Every matrix B € R™P admits a decomposition of the form

B =UxV"

* where U € R™" is an orthogonal matrix, 2 € R™*? js
non-negative diagonal matrix, and V € RP*P is an
orthogonal matrix

e A matrix C € R™™ js orthogonal if CT = C~1.
Equivalently, the rows and columns of C are orthonormal
vectors
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Singular Value Decomposition (SVD)

* Every matrix B € R™P admits a decomposition of the form

. T Diagonal elements of X called
B = U2V singular values

* where U € R™" is an orthogonal matrix, 2 € R™*? js
non-negative diagonal matrix, and V € RP*P is an
orthogonal matrix

e A matrix C € R™™ js orthogonal if CT = C~1.
Equivalently, the rows and columns of C are orthonormal
vectors
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SVD and PCA

* Returning to PCA
e LetW = UXVT be the SVD of W
e WWT =uxvTyvstuT = uzztu’”

* |f we can compute the SVD of W, then we don't need to
form the matrix WW T
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SVD and PCA

* For any matrix 4, AA"T is symmetric and positive semidefinite
* LetA = UXVT betheSVDof 4
« AAT = uzvtyztut = uzztu?
* U must be a matrix of eigenvectors of AAT

* The eigenvalues of AA” are all non-negative because
¥ = ¥2 which are the square of the singular values of 4
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An Example: “Eigenfaces”

* Let’s suppose that our data is a collection of images of the
faces of individuals

.E
-‘ - "
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An Example: “Eigenfaces”

* Let’s suppose that our data is a collection of images of the
faces of individuals

 The goal is, given the "training data", to correctly match
new images to the training data

* Let’s suppose that each image is an s X s array of pixels:
x; € R", n = s*

* As before, construct the matrix W € R™ P whose it"
s
]

columniis x; — . ; >
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An Example: “Eigenfaces”

* Forming the matrix WWT requires a lot of memory
e s =256 means WWT is 65536 X 65536

* Need a faster way to compute this without forming the
matrix explicitly

* Could use the singular value decomposition
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An Example: “Eigenfaces”

* Adifferent approach whenp K n

Compute the eigenvectors of AT A (this is an p X p matrix)
Let v be an eigenvector of AT A with eigenvalue 1
AAT Av = AAv

This means that Av is an eigenvector of AAT with
eigenvalue A (or 0)

Save the top k eigenvectors - called eigenfaces in this
example
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An Example: “Eigenfaces”

* The data in the matrix is “training data”

* Given a new image, we’d like to determine which, if any,
member of the data set that it is most similar to

* Step 1: Compute the projection of the recentered, new image
onto each of the k eigenvectors

* This gives us a vector of weights ¢4, ..., C
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An Example: “Eigenfaces”

* The data in the matrix is “training data”

* Given a new image, we’d like to determine which, if any,
member of the data set that it is most similar to

* Step 2: Determine if the input image is close to one of the
faces in the data set

* |f the distance between the input and it's approximation is
too large, then the input is likely not a face
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An Example: “Eigenfaces”

* The data in the matrix is “training data”

* Given a new image, we’d like to determine which, if any,
member of the data set that it is most similar to

 Step 3: Find the person in the training data that is closest to
the new input

* Replace each group of training images by its average

* Compute the distance to the it" average ||c — ai|| where
a' are the coefficients of the average face for person i
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