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Eigenvalues

• 𝜆 is an eigenvalue of a matrix 𝐴 ∈ ℝ𝑛×𝑛 if the linear system 
𝐴𝑥 = 𝜆𝑥 has at least one non-zero solution

• If 𝐴𝑥 = 𝜆𝑥 we say that 𝜆 is an eigenvalue of 𝐴 with 
corresponding eigenvector 𝑥

• Could be multiple eigenvectors for the same 𝜆
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Eigenvalues of Symmetric Matrices

• If 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, then it has 𝑛 linearly independent 
eigenvectors 𝑣1, … , 𝑣𝑛 corresponding to 𝑛 real eigenvalues

• Moreover, it has 𝑛 linearly independent orthonormal
eigenvectors

• 𝑣𝑖
𝑇𝑣𝑗 = 0 for all 𝑖 ≠ 𝑗

• 𝑣𝑖
𝑇𝑣𝑖 = 1 for all 𝑖
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Eigenvalues of Symmetric Matrices

• If 𝐴 ∈ ℝ𝑛×𝑛 is symmetric, then it has 𝑛 linearly independent 
eigenvectors 𝑣1, … , 𝑣𝑛 corresponding to 𝑛 real eigenvalues

• A symmetric matrix is positive definite if and only if all of its 
eigenvalues are positive

• The orthonormal eigenvectors form a basis of ℝ𝑛 (similar 
to the standard coordinate axes)

4



Examples

• The 2x2 identity matrix has all of its eigenvalues equal to 1 (it 

is positive definite) with orthonormal eigenvectors 
1
0

and 
0
1

• The matrix 
1 1
1 1

has eigenvalues 0 and 2 with orthonormal 

eigenvectors 

−1

2
1

2

and

1

2
1

2

• The matrix 
2 1
1 2

has eigenvalues 1 and 3 with orthonormal 

eigenvectors 

−1

2
1

2

and 

1

2
1

2
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Eigenvalues

• Suppose 𝐴 ∈ ℝ𝑛×𝑛 is symmetric

• Any 𝑥 ∈ ℝ𝑛 can be written as 𝑥 = σ𝑖=1
𝑛 𝑐𝑖𝑣𝑖 where 𝑣1, … , 𝑣𝑛

are the eigenvectors of 𝐴

• 𝐴𝑥 = σ𝑖=1
𝑛 𝜆𝑖𝑐𝑖𝑣𝑖

• 𝐴2𝑥 = σ𝑖=1
𝑛 𝜆𝑖

2𝑐𝑖𝑣𝑖
⁞

• 𝐴𝑡𝑥 = σ𝑖=1
𝑛 𝜆𝑖

𝑡𝑐𝑖𝑣𝑖
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Eigenvalues

• Suppose 𝐴 ∈ ℝ𝑛×𝑛 is symmetric

• Any 𝑥 ∈ ℝ𝑛 can be written as 𝑥 = σ𝑖=1
𝑛 𝑐𝑖𝑣𝑖 where 𝑣1, … , 𝑣𝑛

are the eigenvectors of 𝐴

• 𝑐𝑖 = 𝑣𝑖
𝑇𝑥, this is the projection of 𝑥 along the line given by 

𝑣𝑖 (assuming that 𝑣𝑖 is a unit vector)
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Eigenvalues of Symmetric Matrices

• Let 𝑄 ∈ ℝ𝑛×𝑛 be the matrix whose 𝑖𝑡ℎ column is 𝑣𝑖 and 𝐷 ∈
ℝ𝑛×𝑛 be the diagonal matrix such that 𝐷𝑖𝑖 = 𝜆𝑖

• 𝐴𝑥 = 𝑄𝐷𝑄𝑇𝑥

• Can throw away some eigenvectors to approximate this 
quantity

• For example, let 𝑄𝑘 be the matrix formed by keeping 
only the top 𝑘 eigenvectors and 𝐷𝑘 be the diagonal 
matrix whose diagonal consists of the top 𝑘 eigenvalues
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Frobenius Norm

• The Frobenius norm is a matrix norm given by

𝐴 𝐹 = ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝐴𝑖𝑗
2

• 𝑄𝑘𝐷𝑘𝑄𝑘
𝑇 is the best rank 𝑘 approximation of the symmetric 

matrix 𝐴 with respect to the Frobenius norm

𝑄𝑘𝐷𝑘𝑄𝑘
𝑇 = argmin

𝐵∈ℝ𝑛×𝑛𝑠.𝑡. 𝑟𝑎𝑛𝑘 𝐵 =𝑘
𝐴 − 𝐵 𝐹
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Principal Component Analysis

• Principle component analysis

• Can be used to reduce the dimensionality of the data while 
still maintaining a good approximation of the sample mean 
and variance

• Can also be used for selecting good features that are 
combinations of the input features

• Unsupervised – just finds a good representation of the 
data in terms of combinations of the input features
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Principal Component Analysis

• Input a collection of data points sampled from some 
distribution 𝑥1, … , 𝑥𝑝 ∈ ℝ

𝑛

• Construct the matrix 𝑊 ∈ ℝ𝑛×𝑝 whose 𝑖𝑡ℎ column is 

𝑥𝑖 −
σ𝑗 𝑥𝑗

𝑝

• The matrix 𝑊𝑊𝑇 is the sample covariance matrix

• 𝑊𝑊𝑇 is symmetric and positive semidefinite
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Principal Component Analysis

• PCA finds a set of orthogonal vectors that best explain the 
variance of the sample covariance matrix

• From our previous discussion, these are exactly the 
eigenvectors of 𝑊𝑊𝑇

• We can discard the eigenvectors corresponding to small 
magnitude eigenvalues to yield an approximation

• Simple algorithm to describe, MATLAB and other 
programming languages have built in support for 
eigenvector computation
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PCA in Practice

• Forming the matrix 𝑊𝑊𝑇 can require a lot of memory 
(especially if 𝑛 ≫ 𝑝)

• Need a faster way to compute this without forming the 
matrix explicitly

• Typical approach: use the singular value decomposition
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Singular Value Decomposition (SVD)

• Every matrix 𝐵 ∈ ℝ𝑛×𝑝 admits a decomposition of the form

𝐵 = 𝑈Σ𝑉𝑇

• where 𝑈 ∈ ℝ𝑛×𝑛 is an orthogonal matrix, Σ ∈ ℝ𝑛×𝑝 is 
non-negative diagonal matrix, and 𝑉 ∈ ℝ𝑝×𝑝 is an 
orthogonal matrix

• A matrix 𝐶 ∈ ℝ𝑚×𝑚 is orthogonal if 𝐶𝑇 = 𝐶−1.  
Equivalently, the rows and columns of 𝐶 are orthonormal 
vectors
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Singular Value Decomposition (SVD)

• Every matrix 𝐵 ∈ ℝ𝑛×𝑝 admits a decomposition of the form

𝐵 = 𝑈Σ𝑉𝑇

• where 𝑈 ∈ ℝ𝑛×𝑛 is an orthogonal matrix, Σ ∈ ℝ𝑛×𝑝 is 
non-negative diagonal matrix, and 𝑉 ∈ ℝ𝑝×𝑝 is an 
orthogonal matrix

• A matrix 𝐶 ∈ ℝ𝑚×𝑚 is orthogonal if 𝐶𝑇 = 𝐶−1.  
Equivalently, the rows and columns of 𝐶 are orthonormal 
vectors

Diagonal elements of Σ called 
singular values
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SVD and PCA

• Returning to PCA

• Let 𝑊 = 𝑈Σ𝑉𝑇 be the SVD of 𝑊

• 𝑊𝑊𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑇𝑈𝑇 = 𝑈ΣΣ𝑇𝑈𝑇

• If we can compute the SVD of 𝑊, then we don't need to 
form the matrix 𝑊𝑊𝑇
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SVD and PCA

• For any matrix 𝐴, 𝐴𝐴𝑇 is symmetric and positive semidefinite

• Let 𝐴 = 𝑈Σ𝑉𝑇 be the SVD of 𝐴

• 𝐴𝐴𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑇𝑈𝑇 = 𝑈ΣΣ𝑇𝑈𝑇

• 𝑈 must be a matrix of eigenvectors of 𝐴𝐴𝑇

• The eigenvalues of 𝐴𝐴𝑇 are all non-negative because 
ΣΣ𝑇 = Σ2 which are the square of the singular values of 𝐴
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An Example:  “Eigenfaces”

• Let’s suppose that our data is a collection of images of the 
faces of individuals
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An Example:  “Eigenfaces”

• Let’s suppose that our data is a collection of images of the 
faces of individuals

• The goal is, given the "training data", to correctly match 
new images to the training data

• Let’s suppose that each image is an s × 𝑠 array of pixels: 
𝑥𝑖 ∈ 𝑅

𝑛, 𝑛 = 𝑠2

• As before, construct the matrix 𝑊 ∈ ℝ𝑛×𝑝 whose 𝑖𝑡ℎ

column is 𝑥𝑖 − σ𝑗
𝑥𝑗

𝑝
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An Example:  “Eigenfaces”

• Forming the matrix 𝑊𝑊𝑇 requires a lot of memory 

• 𝑠 = 256 means 𝑊𝑊𝑇 is 65536 × 65536

• Need a faster way to compute this without forming the 
matrix explicitly

• Could use the singular value decomposition
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An Example:  “Eigenfaces”

• A different approach when 𝑝 ≪ 𝑛

• Compute the eigenvectors of 𝐴𝑇𝐴 (this is an 𝑝 × 𝑝 matrix)

• Let 𝑣 be an eigenvector of 𝐴𝑇𝐴 with eigenvalue 𝜆

• 𝐴𝐴𝑇𝐴𝑣 = 𝜆𝐴𝑣

• This means that 𝐴𝑣 is an eigenvector of 𝐴𝐴𝑇with 
eigenvalue 𝜆 (or 0)

• Save the top 𝑘 eigenvectors - called eigenfaces in this 
example
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An Example:  “Eigenfaces”

• The data in the matrix is “training data”

• Given a new image, we’d like to determine which, if any, 
member of the data set that it is most similar to

• Step 1:  Compute the projection of the recentered, new image 
onto each of the 𝑘 eigenvectors

• This gives us a vector of weights 𝑐1, … , 𝑐𝑘
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An Example:  “Eigenfaces”

• The data in the matrix is “training data”

• Given a new image, we’d like to determine which, if any, 
member of the data set that it is most similar to

• Step 2:  Determine if the input image is close to one of the 
faces in the data set

• If the distance between the input and it's approximation is 
too large, then the input is likely not a face
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An Example:  “Eigenfaces”

• The data in the matrix is “training data”

• Given a new image, we’d like to determine which, if any, 
member of the data set that it is most similar to

• Step 3:  Find the person in the training data that is closest to 
the new input 

• Replace each group of training images by its average

• Compute the distance to the 𝑖𝑡ℎ average 𝑐 − 𝑎𝑖 where 
𝑎𝑖 are the coefficients of the average face for person 𝑖
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