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Last Time

• Parameter learning

• Learning the parameter of a simple coin flipping model

• Prior distributions

• Posterior distributions

• Today:  more parameter learning and naïve Bayes
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Maximum Likelihood Estimation (MLE)

• Data: Observed set of 𝛼𝛼𝐻𝐻 heads and 𝛼𝛼𝑇𝑇 tails  

• Hypothesis: Coin flips follow a binomial distribution 

• Learning: Find the “best” 𝜃𝜃

• MLE: Choose θ to maximize the likelihood (probability of D 
given 𝜃𝜃)

𝜃𝜃𝑀𝑀𝐿𝐿𝐿𝐿 = arg max
𝜃𝜃

𝑝𝑝(𝐷𝐷|𝜃𝜃)
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MAP Estimation

• Choosing 𝜃𝜃 to maximize the posterior distribution is called 
maximum a posteriori (MAP) estimation

𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝑝𝑝(𝜃𝜃|𝐷𝐷)

• The only difference between 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 and 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 is that one 
assumes a uniform prior (MLE) and the other allows an 
arbitrary prior
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Sample Complexity

• How many coin flips do we need in order to guarantee that 
our learned parameter does not differ too much from the true 
parameter (with high probability)?

• Can use Chernoff bound (again!)

• Suppose 𝑌𝑌1, … , 𝑌𝑌𝑁𝑁 are i.i.d. random variables taking values 
in {0, 1} such that 𝐸𝐸𝑝𝑝 𝑌𝑌𝑖𝑖 = 𝑦𝑦.  For 𝜖𝜖 > 0,

𝑝𝑝 𝑦𝑦 −
1
𝑁𝑁
�
𝑖𝑖

𝑌𝑌𝑖𝑖 ≥ 𝜖𝜖 ≤ 2𝑒𝑒−2𝑁𝑁𝜖𝜖2
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Sample Complexity

• How many coin flips do we need in order to guarantee that 
our learned parameter does not differ too much from the true 
parameter (with high probability)?

• Can use Chernoff bound (again!)

• For the coin flipping problem with 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛 iid coin flips 
and 𝜖𝜖 > 0,

𝑝𝑝 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −
1
𝑁𝑁
�
𝑖𝑖

𝑋𝑋𝑖𝑖 ≥ 𝜖𝜖 ≤ 2𝑒𝑒−2𝑁𝑁𝜖𝜖2
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Sample Complexity

• How many coin flips do we need in order to guarantee that 
our learned parameter does not differ too much from the true 
parameter (with high probability)?

• Can use Chernoff bound (again!)

• For the coin flipping problem with 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛 iid coin flips 
and 𝜖𝜖 > 0,

𝑝𝑝 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝜖𝜖 ≤ 2𝑒𝑒−2𝑁𝑁𝜖𝜖2
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Sample Complexity

• How many coin flips do we need in order to guarantee that 
our learned parameter does not differ too much from the true 
parameter (with high probability)?

• Can use Chernoff bound (again!)

• For the coin flipping problem with 𝑋𝑋1, … , 𝑋𝑋𝑛𝑛 iid coin flips 
and 𝜖𝜖 > 0,

𝑝𝑝 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝜖𝜖 ≤ 2𝑒𝑒−2𝑁𝑁𝜖𝜖2

𝛿𝛿 ≥ 2𝑒𝑒−2𝑁𝑁𝜖𝜖2 ⇒ 𝑁𝑁 ≥
1
2𝜖𝜖2

ln
2
𝛿𝛿
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MLE for Gaussian Distributions

• Two parameter 
distribution 
characterized by a 
mean and a variance
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Some properties of Gaussians
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• Affine transformation (multiplying by scalar and adding a constant) 
are Gaussian

• 𝑋𝑋 ~ 𝑁𝑁(𝜇𝜇, 𝜎𝜎2)

• 𝑌𝑌 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 ⇒ 𝑌𝑌 ~ 𝑁𝑁(𝑎𝑎𝑎𝑎 + 𝑏𝑏, 𝑎𝑎2𝜎𝜎2)

• Sum of Gaussians is Gaussian

• 𝑋𝑋 ~ 𝑁𝑁(𝜇𝜇𝑋𝑋, 𝜎𝜎𝑋𝑋2), 𝑌𝑌 ~ 𝑁𝑁(𝜇𝜇𝑌𝑌, 𝜎𝜎𝑌𝑌2)

• 𝑍𝑍 = 𝑋𝑋 + 𝑌𝑌 ⇒ 𝑍𝑍 ~ 𝑁𝑁(𝜇𝜇𝑋𝑋 + 𝜇𝜇𝑌𝑌, 𝜎𝜎𝑋𝑋2 + 𝜎𝜎𝑌𝑌2)

• Easy to differentiate, as we will see soon!



Learning a Gaussian

• Collect data

• Hopefully, i.i.d. samples

• e.g., exam scores

• Learn parameters

• Mean: μ

• Variance: σ

𝑖𝑖 Exam Score

0 85
1 95
2 100
3 12

… …
99 89
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MLE for Gaussian:
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• Probability of 𝑁𝑁 i.i.d. samples 𝐷𝐷 = 𝑥𝑥(1), … , 𝑥𝑥(𝑁𝑁)

𝑝𝑝 𝐷𝐷 𝜇𝜇, 𝜎𝜎 =
1
2𝜋𝜋𝜎𝜎2

𝑁𝑁

�
𝑖𝑖=1

𝑁𝑁

𝑒𝑒−
𝑥𝑥 𝑖𝑖 −𝜇𝜇

2

2𝜎𝜎2

• Log-likelihood of the data

ln 𝑝𝑝(𝐷𝐷|𝜇𝜇, 𝜎𝜎) = −
𝑁𝑁
2

ln 2𝜋𝜋𝜎𝜎2 −�
𝑖𝑖=1

𝑁𝑁
𝑥𝑥 𝑖𝑖 − 𝜇𝜇

2

2𝜎𝜎2



MLE for the Mean of a Gaussian
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𝜕𝜕
𝜕𝜕𝜕𝜕

ln 𝑝𝑝(𝐷𝐷|𝜇𝜇, 𝜎𝜎) =
𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝑁𝑁
2

ln 2𝜋𝜋𝜎𝜎2 −�
𝑖𝑖=1

𝑁𝑁
𝑥𝑥 𝑖𝑖 − 𝜇𝜇

2

2𝜎𝜎2

=
𝜕𝜕
𝜕𝜕𝜕𝜕

−�
𝑖𝑖=1

𝑁𝑁
𝑥𝑥 𝑖𝑖 − 𝜇𝜇

2

2𝜎𝜎2

= −�
𝑖𝑖=1

𝑁𝑁
𝑥𝑥 𝑖𝑖 − 𝜇𝜇
𝜎𝜎2

=
𝑁𝑁𝑁𝑁 − ∑𝑖𝑖=1𝑁𝑁 𝑥𝑥 𝑖𝑖

𝜎𝜎2
= 0

𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥 𝑖𝑖



MLE for Variance
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𝜕𝜕
𝜕𝜕𝜎𝜎

ln 𝑝𝑝(𝐷𝐷|𝜇𝜇, 𝜎𝜎) =
𝜕𝜕
𝜕𝜕𝜎𝜎

−
𝑁𝑁
2

ln 2𝜋𝜋𝜎𝜎2 −�
𝑖𝑖=1

𝑁𝑁
𝑥𝑥 𝑖𝑖 − 𝜇𝜇

2

2𝜎𝜎2

= −
𝑁𝑁
𝜎𝜎

+
𝜕𝜕
𝜕𝜕𝜎𝜎

−�
𝑖𝑖=1

𝑁𝑁
𝑥𝑥 𝑖𝑖 − 𝜇𝜇

2

2𝜎𝜎2

= −
𝑁𝑁
𝜎𝜎

+ �
𝑖𝑖=1

𝑁𝑁
𝑥𝑥 𝑖𝑖 − 𝜇𝜇

2

𝜎𝜎3
= 0

𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀2 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥 𝑖𝑖 − 𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀
2



Learning Gaussian parameters

𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥 𝑖𝑖

𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀2 =
1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥 𝑖𝑖 − 𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀
2

• MLE for the variance of a Gaussian is biased

• Expected result of estimation is not true parameter! 

• Unbiased variance estimator

𝜎𝜎𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢2 =
1

𝑁𝑁 − 1
�
𝑖𝑖=1

𝑁𝑁

𝑥𝑥 𝑖𝑖 − 𝜇𝜇𝑀𝑀𝑀𝑀𝑀𝑀
2
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Bayesian Categorization/Classification

• Given features 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) predict a label 𝑦𝑦

• If we had a joint distribution over 𝑥𝑥 and 𝑦𝑦, given 𝑥𝑥 we could 
find the label using MAP inference

arg max
𝑦𝑦

𝑝𝑝(𝑦𝑦|𝑥𝑥1, … , 𝑥𝑥𝑚𝑚)

• Can compute this in exactly the same way that we did before 
using Bayes rule:

𝑝𝑝 𝑦𝑦 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 =
𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 𝑦𝑦 𝑝𝑝 𝑦𝑦

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚
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Article Classification

• Given a collection of news articles labeled by topic goal is, 
given an unseen news article, to predict topic

• One possible feature vector:

• One feature for each word in the document, in order

– 𝑥𝑥𝑖𝑖 corresponds to the 𝑖𝑖𝑡𝑡𝑡 word

– 𝑥𝑥𝑖𝑖 can take a different value for each word in the 
dictionary
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Text Classification
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Text Classification

• 𝑥𝑥1, 𝑥𝑥2, … is sequence of words in document

• The set of all possible features, and hence 𝑝𝑝(𝑦𝑦|𝑥𝑥), is huge

• Article at least 1000 words, 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥1000)

• 𝑥𝑥𝑖𝑖 represents 𝑖𝑖𝑡𝑡𝑡 word in document

• Can be any word in the dictionary – at least 10,000 
words

• 10,0001000 = 104000 possible values

• Atoms in Universe: ~1080
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Bag of Words Model

• Typically assume position in document doesn’t matter

𝑝𝑝 𝑋𝑋𝑖𝑖 = "𝑡𝑡𝑡𝑡𝑡𝑡 𝑌𝑌 = 𝑦𝑦 = 𝑝𝑝(𝑋𝑋𝑘𝑘 = "𝑡𝑡𝑡𝑡𝑡𝑡|𝑌𝑌 = 𝑦𝑦)

• All positions have the same distribution

• Ignores the order of words 

• Sounds like a bad assumption, but often works well!

• Features

• Set of all possible words and their corresponding 
frequencies (number of times it occurs in the document)
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Bag of Words

aardvark 0

about2

all 2

Africa 1

apple0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0
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Need to Simplify Somehow

• Even with the bag of words assumption, there are too many 
possible outcomes

• Too many probabilities

𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚|𝑦𝑦)

• Can we assume some are the same?

𝑝𝑝(𝑥𝑥1, 𝑥𝑥2|𝑦𝑦 ) = 𝑝𝑝(𝑥𝑥1|𝑦𝑦) 𝑝𝑝(𝑥𝑥2|𝑦𝑦)

• This is a conditional independence assumption
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Conditional Independence

• X is conditionally independent of Y  given Z, if the probability 
distribution for X is independent of the value of Y, given the 
value of Z

𝑝𝑝 𝑋𝑋 𝑌𝑌, 𝑍𝑍 = 𝑃𝑃(𝑋𝑋|𝑍𝑍)

• Equivalent to

𝑝𝑝 𝑋𝑋, 𝑌𝑌 𝑍𝑍 = 𝑝𝑝 𝑋𝑋 𝑍𝑍 𝑃𝑃(𝑌𝑌|𝑍𝑍)

23



Naïve Bayes

• Naïve Bayes assumption

• Features are independent given class label

𝑝𝑝(𝑥𝑥1, 𝑥𝑥2|𝑦𝑦 ) = 𝑝𝑝(𝑥𝑥1|𝑦𝑦) 𝑝𝑝(𝑥𝑥2|𝑦𝑦)

• More generally

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚|𝑦𝑦 = �
𝑖𝑖=1

𝑚𝑚

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑦𝑦)

• How many parameters now?

• Suppose 𝑥𝑥 is composed of 𝑑𝑑 binary features
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Naïve Bayes

• Naïve Bayes assumption

• Features are independent given class label

𝑝𝑝(𝑥𝑥1, 𝑥𝑥2|𝑦𝑦 ) = 𝑝𝑝(𝑥𝑥1|𝑦𝑦) 𝑝𝑝(𝑥𝑥2|𝑦𝑦)

• More generally

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚|𝑦𝑦 = �
𝑖𝑖=1

𝑚𝑚

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑦𝑦)

• How many parameters now?

• Suppose 𝑥𝑥 composed of 𝑑𝑑 binary features ⇒ 𝑂𝑂(𝑑𝑑 ⋅ 𝐿𝐿)
where 𝐿𝐿 is the number of class labels
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The Naïve Bayes Classifier
• Given

• Prior 𝑝𝑝(𝑦𝑦)

• 𝑚𝑚 conditionally independent 
features 𝑋𝑋 given the class 𝑌𝑌

• For each 𝑋𝑋𝑖𝑖, we have likelihood 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑌𝑌)

• Classify via

𝑦𝑦∗ = ℎ𝑁𝑁𝑁𝑁 𝑥𝑥 = arg max
𝑦𝑦

𝑝𝑝 𝑦𝑦 𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚|𝑦𝑦)

= arg max
𝑦𝑦

𝑝𝑝(𝑦𝑦)�
𝑖𝑖

𝑚𝑚

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑦𝑦)

𝑌𝑌

𝑋𝑋1 𝑋𝑋𝑛𝑛𝑋𝑋2
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MLE for the Parameters of NB

• Given dataset, count occurrences for all pairs

• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖, 𝑌𝑌 = 𝑦𝑦) is the number of samples in which 
𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 and 𝑌𝑌 = 𝑦𝑦

• MLE for discrete NB

𝑝𝑝 𝑌𝑌 = 𝑦𝑦 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌 = 𝑦𝑦

∑𝑦𝑦′ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑌𝑌 = 𝑦𝑦′)

𝑝𝑝 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 𝑌𝑌 = 𝑦𝑦 =
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖, 𝑌𝑌 = 𝑦𝑦

∑𝑥𝑥𝑖𝑖′ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖′, 𝑌𝑌 = 𝑦𝑦)
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Naïve Bayes Calculations
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Subtleties of NB Classifier: #1 

• Usually, features are not conditionally independent:

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚 𝑦𝑦 ≠�
𝑖𝑖=1

𝑚𝑚

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑦𝑦)

• The naïve Bayes assumption is often violated, yet it performs 
surprisingly well in many cases

• Plausible reason: Only need the probability of the correct 
class to be the largest!

• Example: binary classification; just need to figure out the 
correct side of 0.5 and not the actual probability (0.51 is 
the same as 0.99).
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Subtleties of NB Classifier

• What if you never see a training instance  (𝑋𝑋1 = 𝑎𝑎, 𝑌𝑌 = 𝑏𝑏)

• Example: you did not see the word “Nigerian” in spam

• Then 𝑝𝑝 𝑋𝑋1 = 𝑎𝑎 𝑌𝑌 = 𝑏𝑏 = 0

• Thus no matter what values 𝑋𝑋2,⋯ , 𝑋𝑋𝑚𝑚 take

𝑃𝑃 𝑋𝑋1 = a, 𝑋𝑋2 = 𝑥𝑥2,⋯ , 𝑋𝑋𝑚𝑚 = 𝑥𝑥𝑚𝑚 𝑌𝑌 = 𝑏𝑏 = 0

• Why?
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Subtleties of NB Classifier

• To fix this, use a prior!

• Already saw how to do this in the coin-flipping example 
using the Beta distribution

• For NB over discrete spaces, can use the Dirichlet prior

• The Dirichlet distribution is a distribution over 𝑧𝑧1, … , 𝑧𝑧𝑘𝑘 ∈
(0,1) such that 𝑧𝑧1 + ⋯+ 𝑧𝑧𝑘𝑘 = 1 characterized by 𝑘𝑘
parameters 𝛼𝛼1, … , 𝛼𝛼𝑘𝑘

𝑓𝑓 𝑧𝑧1, … , 𝑧𝑧𝑘𝑘; 𝛼𝛼1, … , 𝛼𝛼𝑘𝑘 ∝�
𝑖𝑖=1

𝑘𝑘

𝑧𝑧𝑖𝑖
𝛼𝛼𝑖𝑖−1

• Called smoothing, what are the MLE estimates under 
these kinds of priors?
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