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Unobserved Variables

• Latent or hidden variables in the model are never observed

• We may or may not be interested in their values, but 
their existence is crucial to the model

• Some observations in a particular sample may be missing

• Missing information on surveys or medical records 
(quite common)

• We may need to model how the variables are missing
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Missing Data

• Data can be missing from the model in many different ways

• Missing completely at random:  the probability that a data 
item is missing is independent of the observed data and 
the other missing data

• Missing at random:  the probability that a data item is 
missing can depend on the observed data

• Missing not at random:  the probability that a data item is 
missing can depend on the observed data and the other 
missing data
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Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each 
possible observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not 
that variable is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)
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Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each 
possible observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not 
that variable is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

Explicit model of the missing 
data

(missing not at random)
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Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each 
possible observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not 
that variable is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

Missing at 
random
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Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each 
possible observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not 
that variable is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 = 𝑝𝑝(𝑚𝑚)𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

Missing 
completely 
at random
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Modelling Missing Data

• Add additional binary variable 𝑚𝑚𝑖𝑖 to the model for each 
possible observed variable 𝑥𝑥𝑖𝑖 that indicates whether or not 
that variable is observed

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚 = 𝑝𝑝(𝑚𝑚)𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)

How can you model latent 
variables in this framework?
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Learning with Missing Data

• In order to design learning algorithms for models with missing 
data, we will make two assumptions

1. The data is missing at random

2. The model parameters corresponding to the missing data 
(𝛿𝛿) are separate from the model parameters of the 
observed data (𝜃𝜃)

• That is

𝑝𝑝 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑚𝑚|𝜃𝜃, 𝛿𝛿 = 𝑝𝑝 𝑚𝑚 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 , 𝛿𝛿 𝑝𝑝(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜|𝜃𝜃)

• Derivation of the algorithm in this case then follows similarly 
to the previous discussion
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Learning with Latent Variables

• Log-likelihood with latent variables:

log 𝑙𝑙 𝜃𝜃 = �
𝑖𝑖=1

𝑁𝑁

log 𝑝𝑝(𝑥𝑥(𝑖𝑖)|𝜃𝜃)

= �
𝑖𝑖=1

𝑁𝑁

log�
𝑦𝑦

𝑝𝑝(𝑥𝑥 𝑖𝑖 ,𝑦𝑦|𝜃𝜃)

• Again, this is typically not a concave function of 𝜃𝜃

• We will apply the same trick that we did with GMMs last 
lecture
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Expectation Maximization

log 𝑙𝑙 𝜃𝜃 = �
𝑖𝑖=1

𝑁𝑁

log 𝑝𝑝(𝑥𝑥(𝑖𝑖)|𝜃𝜃)

= �
𝑖𝑖=1

𝑁𝑁

log�
𝑦𝑦

𝑝𝑝(𝑥𝑥 𝑖𝑖 ,𝑦𝑦|𝜃𝜃)

= �
𝑖𝑖=1

𝑁𝑁

log�
𝑦𝑦

𝑞𝑞𝑖𝑖 𝑦𝑦 ⋅
𝑝𝑝 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝜃𝜃

𝑞𝑞𝑖𝑖 𝑦𝑦

≥�
𝑖𝑖=1

𝑁𝑁

�
𝑦𝑦

𝑞𝑞𝑖𝑖 𝑦𝑦 log
𝑝𝑝 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝜃𝜃

𝑞𝑞𝑖𝑖 𝑦𝑦
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Expectation Maximization

𝐹𝐹 𝑞𝑞,𝜃𝜃 ≡�
𝑖𝑖=1

𝑁𝑁

�
𝑦𝑦

𝑞𝑞𝑖𝑖 𝑦𝑦 log
𝑝𝑝 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝜃𝜃

𝑞𝑞𝑖𝑖(𝑦𝑦)

• Maximizing 𝐹𝐹 is equivalent to the maximizing the log-
likelihood

• Maximize it using coordinate ascent

𝑞𝑞𝑡𝑡+1 = arg max
𝑞𝑞1,…,𝑞𝑞𝐾𝐾

𝐹𝐹(𝑞𝑞,𝜃𝜃𝑡𝑡)

𝜃𝜃𝑡𝑡+1 = argmax
𝜃𝜃

𝐹𝐹(𝑞𝑞𝑡𝑡+1,𝜃𝜃)
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Expectation Maximization

�
𝑖𝑖=1

𝑁𝑁

�
𝑦𝑦

𝑞𝑞𝑖𝑖 𝑦𝑦 log
𝑝𝑝 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝜃𝜃𝑡𝑡

𝑞𝑞𝑖𝑖(𝑦𝑦)

• Maximized when 𝑞𝑞𝑖𝑖 𝑦𝑦 = 𝑝𝑝 𝑦𝑦|𝑥𝑥 𝑖𝑖 ,𝜃𝜃𝑡𝑡

• Can reformulate the EM algorithm as

𝜃𝜃𝑡𝑡+1 = argmax
𝜃𝜃

�
𝑖𝑖=1

𝑁𝑁

�
𝑦𝑦

𝑝𝑝(𝑦𝑦|𝑥𝑥(𝑖𝑖),𝜃𝜃𝑡𝑡) log 𝑝𝑝 𝑥𝑥(𝑖𝑖),𝑦𝑦 𝜃𝜃
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Latent Variable Models

• Many real-world models contain latent variables

• Because we will need to marginalize out over the latent 
variables in MLE, the presence of latent variables in the model 
can make performing MLE much harder

• As before, we will make simplifying assumptions about the 
probability distribution of the latent variables
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Markov Chains

• A Markov chain is a sequence of random variables 𝑋𝑋1, … ,𝑋𝑋𝑇𝑇 ∈
𝑆𝑆 such that

𝑝𝑝 𝑥𝑥𝑡𝑡+1 𝑥𝑥1, … , 𝑥𝑥𝑇𝑇 = 𝑝𝑝 𝑥𝑥𝑡𝑡+1 𝑥𝑥𝑡𝑡

• The set 𝑆𝑆 is called the state space, and 𝑝𝑝 𝑋𝑋𝑡𝑡+1 = 𝑗𝑗 𝑋𝑋𝑡𝑡 = 𝑖𝑖 is 
the probability of transitioning from state 𝑖𝑖 to state 𝑗𝑗 at step 𝑡𝑡
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Markov Chains

• When the probability of transitioning between two states 
does not depend on time, we call it a time homogeneous
Markov chain

• Represent it by a 𝑆𝑆 × |𝑆𝑆| transition matrix 𝐴𝐴

• 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑝𝑝(𝑋𝑋𝑡𝑡+1 = 𝑗𝑗|𝑋𝑋𝑡𝑡 = 𝑖𝑖)

• 𝐴𝐴 is a stochastic matrix (all rows sum to one)
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Hidden Markov Models

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑇𝑇 ,𝑦𝑦1, … ,𝑦𝑦𝑇𝑇 = 𝑝𝑝 𝑦𝑦1 𝑝𝑝 𝑥𝑥1 𝑦𝑦1 �
𝑡𝑡

𝑝𝑝 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡)

• 𝑋𝑋’s are observed variables, 𝑌𝑌’s are latent/hidden

• Time homogenous:  𝑝𝑝 𝑦𝑦𝑡𝑡 = 𝑗𝑗 𝑦𝑦𝑡𝑡−1 = 𝑖𝑖 = 𝑝𝑝(𝑦𝑦𝑡𝑡′ = 𝑗𝑗|𝑦𝑦𝑡𝑡′−1 = 𝑖𝑖)

• For learning, we are given sequences of observations

𝑌𝑌1 𝑌𝑌2 𝑌𝑌𝑇𝑇−1 𝑌𝑌𝑇𝑇...

𝑋𝑋1 𝑋𝑋2 𝑋𝑋𝑇𝑇−1 𝑋𝑋𝑇𝑇...
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Hidden Markov Models

• Well suited to problems/models that evolve over time

• Examples:

• Observations correspond sizes of tree growth rings for one 
year, the latent variables correspond to average 
temperature

• Observations correspond to noisy missile location, latent 
variables correspond to true missile locations
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Learning HMMs

• A bit of notation:

• 𝜋𝜋𝑖𝑖 = 𝑝𝑝(𝑌𝑌1 = 𝑖𝑖)

• 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑝𝑝(𝑌𝑌𝑡𝑡 = 𝑗𝑗|𝑌𝑌𝑡𝑡−1 = 𝑖𝑖)

• 𝑏𝑏𝑗𝑗 𝑥𝑥𝑡𝑡 = 𝑝𝑝(𝑋𝑋𝑡𝑡 = 𝑥𝑥𝑡𝑡|𝑌𝑌𝑡𝑡 = 𝑗𝑗)

• These parameters describe an HMM, 𝜃𝜃 = {𝜋𝜋,𝐴𝐴, 𝑏𝑏}

• We’ll derive the updates in the case that the observations 
𝑋𝑋𝑡𝑡 are discrete random variables
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Learning HMMs

�
𝑦𝑦

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃𝑠𝑠) log 𝑝𝑝 𝑥𝑥, 𝑦𝑦 𝜃𝜃 =

= �
𝑦𝑦

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃𝑠𝑠) log 𝑝𝑝 𝑦𝑦1 𝑝𝑝 𝑥𝑥1 𝑦𝑦1 �
𝑡𝑡=2

𝑇𝑇

𝑝𝑝 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡−1 𝑝𝑝 𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡

= �
𝑦𝑦

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃𝑠𝑠) log 𝜋𝜋𝑦𝑦1𝑏𝑏𝑦𝑦1 𝑥𝑥1 �
𝑡𝑡=2

𝑇𝑇

𝐴𝐴𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−1𝑏𝑏𝑦𝑦𝑡𝑡 𝑥𝑥𝑡𝑡

= �
𝑦𝑦

𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝜃𝜃𝑠𝑠) log𝜋𝜋𝑦𝑦1 + �
𝑦𝑦

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃𝑠𝑠) �
𝑡𝑡=1

𝑇𝑇

log𝑏𝑏𝑦𝑦𝑡𝑡 𝑥𝑥𝑡𝑡 + �
𝑦𝑦

𝑝𝑝(𝑦𝑦|𝑥𝑥,𝜃𝜃𝑠𝑠) �
𝑡𝑡=2

𝑇𝑇

log𝐴𝐴𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−1

= �
𝑖𝑖

𝑝𝑝(𝑌𝑌1 = 𝑖𝑖|𝑥𝑥,𝜃𝜃𝑠𝑠) log𝜋𝜋𝑖𝑖 + �
𝑡𝑡=1

𝑇𝑇

�
𝑖𝑖

𝑝𝑝(𝑌𝑌𝑡𝑡 = 𝑖𝑖|𝑥𝑥,𝜃𝜃𝑠𝑠) log𝑏𝑏𝑖𝑖 𝑥𝑥𝑡𝑡 + �
𝑡𝑡=2

𝑇𝑇

�
𝑖𝑖

�
𝑗𝑗

𝑝𝑝(𝑌𝑌𝑡𝑡 = 𝑖𝑖,𝑌𝑌𝑡𝑡−1 = 𝑗𝑗|𝑥𝑥,𝜃𝜃𝑠𝑠) log𝐴𝐴𝑖𝑖,𝑗𝑗
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Learning HMMs

𝑝𝑝 𝑦𝑦 𝑥𝑥,𝜃𝜃𝑠𝑠 = 𝜋𝜋𝑦𝑦1
𝑠𝑠−1𝑏𝑏𝑦𝑦1

𝑠𝑠−1 𝑥𝑥1 �
𝑡𝑡=2

𝑇𝑇

𝐴𝐴𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−1
𝑠𝑠−1 𝑏𝑏𝑦𝑦𝑡𝑡

𝑠𝑠−1 𝑥𝑥𝑡𝑡

𝜋𝜋𝑖𝑖𝑠𝑠 = 𝑝𝑝 𝑌𝑌1 = 𝑖𝑖|𝑥𝑥,𝜃𝜃𝑠𝑠

𝑏𝑏𝑖𝑖𝑠𝑠 𝑘𝑘 =
∑𝑡𝑡=1𝑇𝑇 𝑝𝑝 𝑌𝑌𝑡𝑡 = 𝑖𝑖 𝑥𝑥,𝜃𝜃𝑠𝑠 𝛿𝛿 𝑥𝑥𝑡𝑡 = 𝑘𝑘

∑𝑡𝑡=1𝑇𝑇 𝑝𝑝 𝑌𝑌𝑡𝑡 = 𝑖𝑖 𝑥𝑥,𝜃𝜃𝑠𝑠

𝐴𝐴𝑖𝑖𝑖𝑖𝑠𝑠 =
∑𝑡𝑡=2𝑇𝑇 𝑝𝑝 𝑌𝑌𝑡𝑡 = 𝑖𝑖,𝑌𝑌𝑡𝑡−1 = 𝑗𝑗 𝑥𝑥,𝜃𝜃𝑠𝑠

∑𝑡𝑡=2𝑇𝑇 𝑝𝑝 𝑌𝑌𝑡𝑡−1 = 𝑗𝑗 𝑥𝑥,𝜃𝜃𝑠𝑠
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Prediction in HMMs

• Once we learn the model, given a new sequence of 
observations, 𝑥𝑥1, … , 𝑥𝑥𝑇𝑇, we want to predict 𝑦𝑦𝑇𝑇

• In the tree application, this corresponds to finding the 
temperature at a specific time given the rings of a tree

• In the missile tracking example, this corresponds to finding 
the position of the missile at a particular time

• Want to compute 𝑝𝑝(𝑦𝑦𝑇𝑇|𝑥𝑥,𝜃𝜃)
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Prediction in HMMs

• Want to compute 𝑝𝑝 𝑦𝑦𝑇𝑇 𝑥𝑥,𝜃𝜃 = 𝑝𝑝 𝑥𝑥,𝑦𝑦𝑇𝑇 𝜃𝜃 /𝑝𝑝(𝑥𝑥|𝜃𝜃)

• Direct approach:

𝑝𝑝 𝑥𝑥,𝑌𝑌𝑇𝑇 = 𝑖𝑖 𝜃𝜃 = �
𝑦𝑦1,…,𝑦𝑦𝑇𝑇−1

𝑝𝑝 𝑥𝑥,𝑦𝑦1, … , 𝑦𝑦𝑇𝑇−1,𝑌𝑌𝑇𝑇 = 𝑖𝑖 𝜃𝜃

• Dynamic programming approach:

𝑝𝑝 𝑥𝑥,𝑌𝑌𝑇𝑇 = 𝑖𝑖 𝜃𝜃 = �
𝑗𝑗

𝑝𝑝(𝑥𝑥,𝑌𝑌𝑇𝑇 = 𝑖𝑖,𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)

= �
𝑗𝑗

𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑇𝑇−1,𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)𝑝𝑝(𝑥𝑥𝑇𝑇 ,𝑌𝑌𝑇𝑇 = 𝑖𝑖|𝑥𝑥1, … , 𝑥𝑥𝑇𝑇−1,𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)

= �
𝑗𝑗

𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑇𝑇−1,𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)𝑝𝑝 𝑥𝑥𝑇𝑇 𝑌𝑌𝑇𝑇 = 𝑖𝑖 𝑝𝑝(𝑌𝑌𝑇𝑇 = 𝑖𝑖|𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)
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Prediction in HMMs

• Want to compute 𝑝𝑝 𝑦𝑦𝑇𝑇 𝑥𝑥,𝜃𝜃 = 𝑝𝑝 𝑥𝑥,𝑦𝑦𝑇𝑇 𝜃𝜃 /𝑝𝑝(𝑥𝑥|𝜃𝜃)

• Direct approach:

𝑝𝑝 𝑥𝑥,𝑌𝑌𝑇𝑇 = 𝑖𝑖 𝜃𝜃 = �
𝑦𝑦1,…,𝑦𝑦𝑇𝑇−1

𝑝𝑝 𝑥𝑥,𝑦𝑦1, … , 𝑦𝑦𝑇𝑇−1,𝑌𝑌𝑇𝑇 = 𝑖𝑖 𝜃𝜃

• Dynamic programming approach:

𝑝𝑝 𝑥𝑥,𝑌𝑌𝑇𝑇 = 𝑖𝑖 𝜃𝜃 = �
𝑗𝑗

𝑝𝑝(𝑥𝑥,𝑌𝑌𝑇𝑇 = 𝑖𝑖,𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)

= �
𝑗𝑗

𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑇𝑇−1,𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)𝑝𝑝(𝑥𝑥𝑇𝑇 ,𝑌𝑌𝑇𝑇 = 𝑖𝑖|𝑥𝑥1, … , 𝑥𝑥𝑇𝑇−1,𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)

= �
𝑗𝑗

𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑇𝑇−1,𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)𝑝𝑝 𝑥𝑥𝑇𝑇 𝑌𝑌𝑇𝑇 = 𝑖𝑖 𝑝𝑝(𝑌𝑌𝑇𝑇 = 𝑖𝑖|𝑌𝑌𝑇𝑇−1 = 𝑗𝑗)

Called filtering:  easy to implement 
using dynamic programming
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Latent Variables & EM

• Previous updates derived for a single observation (to simplify)

• Can get the general updates for multiple sequences by 
adding sums in the appropriate places

• Same principle as EM for mixture models

• Also suffers from the existence of lots of local optima
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