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Structured Distributions

• We’ve seen two types of simple probability models that can 
be learned from data

• Naive Bayes:  assume attributes are independent given the 
label

• Hidden Markov Models:  assumes the hidden variables 
form a Markov chain and each observation is conditionally 
independent of the remaining variables given the 
corresponding latent variable

• Today:  Bayesian networks

• Generalizes both of these cases
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Structured Distributions

• Consider a general joint distribution 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) over binary 
valued random variables

• If 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are all independent given a different random 
variable 𝑌𝑌, then

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛|𝑦𝑦 = 𝑝𝑝 𝑥𝑥1|𝑦𝑦 … 𝑝𝑝 𝑥𝑥𝑛𝑛 𝑦𝑦

and

𝑝𝑝 𝑦𝑦, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝(𝑦𝑦)𝑝𝑝 𝑥𝑥1|𝑦𝑦 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑦𝑦)

• How much storage is needed to represent this model?
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Structured Distributions

• Consider a different joint distribution 𝑝𝑝(𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) over 
binary valued random variables

• Suppose, for 𝑖𝑖 > 2, 𝑋𝑋𝑖𝑖 is independent of 𝑋𝑋1, … ,𝑋𝑋𝑖𝑖−2 given 
𝑋𝑋𝑖𝑖−1

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛−1)
= 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥2 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1)

• How much storage is needed to represent this model?

• This distribution corresponds to a Markov chain
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Bayesian Network

• A Bayesian network is a directed graphical model that 
captures independence relationships of a given probability 
distribution

• Directed acyclic graph (DAG), 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• One node for each random variable

• One conditional probability distribution per node

• Directed edge represents a direct statistical dependence
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Bayesian Network

• A Bayesian network is a directed graphical model that 
captures independence relationships of a given probability 
distribution

• Encodes local Markov independence assumptions that 
each node is independent of its non-descendants given 
its parents

• Corresponds to a factorization of the joint distribution 

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖))

6



Directed Chain

𝑝𝑝 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = 𝑝𝑝 𝑥𝑥1 𝑝𝑝 𝑥𝑥2 𝑥𝑥1 𝑝𝑝 𝑥𝑥3 𝑥𝑥2 …𝑝𝑝(𝑥𝑥𝑛𝑛|𝑥𝑥𝑛𝑛−1)
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Example:

• Local Markov independence relations?

• Joint distribution?
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MLE for Bayesian Networks

• Given samples 𝑥𝑥(1), … , 𝑥𝑥(𝑀𝑀) from some unknown Bayesian 
network that factors over the directed acyclic graph 𝐺𝐺

• The parameters of a Bayesian model are simply the 
conditional probabilities that define the factorization

• For each 𝑖𝑖 ∈ 𝐺𝐺 we need to learn 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 ), create a 
variable 𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝑖𝑖∈𝑉𝑉

log 𝜃𝜃𝑥𝑥𝑖𝑖
(𝑚𝑚)|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

(𝑚𝑚)
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MLE for Bayesian Networks

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝑖𝑖∈𝑉𝑉

log 𝜃𝜃𝑥𝑥𝑖𝑖
(𝑚𝑚)|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

(𝑚𝑚)

= �
𝑖𝑖∈𝑉𝑉

�
𝑚𝑚

log 𝜃𝜃𝑥𝑥𝑖𝑖
(𝑚𝑚)|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

(𝑚𝑚)

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parents(i)log 𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
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MLE for Bayesian Networks

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝑖𝑖∈𝑉𝑉

log 𝜃𝜃𝑥𝑥𝑖𝑖
(𝑚𝑚)|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

(𝑚𝑚)

= �
𝑖𝑖∈𝑉𝑉

�
𝑚𝑚

log 𝜃𝜃𝑥𝑥𝑖𝑖
(𝑚𝑚)|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

(𝑚𝑚)

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parents(i)log 𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
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𝑁𝑁𝑥𝑥𝑖𝑖,𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 is the number of times 
(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 ) was observed in the training set



MLE for Bayesian Networks

log 𝑙𝑙 𝜃𝜃 = �
𝑚𝑚

�
𝑖𝑖∈𝑉𝑉

log 𝜃𝜃𝑥𝑥𝑖𝑖
(𝑚𝑚)|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

(𝑚𝑚)

= �
𝑖𝑖∈𝑉𝑉

�
𝑚𝑚

log 𝜃𝜃𝑥𝑥𝑖𝑖
(𝑚𝑚)|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖)

(𝑚𝑚)

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parents(i)log 𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖
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Fix 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 solve for 𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 for all 𝑥𝑥𝑖𝑖
(same as before)



MLE for Bayesian Networks

𝜃𝜃𝑥𝑥𝑖𝑖|𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖 =
N𝑥𝑥𝑖𝑖,𝑥𝑥parents 𝑖𝑖

∑𝑥𝑥𝑖𝑖′ N𝑥𝑥𝑖𝑖
′,𝑥𝑥parents 𝑖𝑖

=
N𝑥𝑥𝑖𝑖,𝑥𝑥parents 𝑖𝑖

N𝑥𝑥parents 𝑖𝑖

• This is just the empirical conditional probability distribution

• Worked out nicely because of the factorization of the joint 
distribution

• Same as MLE for naive Bayes and HMMs (which are both BNs)
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MLE for Bayesian Networks

• The previous slides have assumed that we are essentially 
given the structure (i.e., the DAG) of the network that we 
would like to learn

• This may not be the case in practice:  we may only be given 
samples and must learn both the parameters and the 
structure of the underlying network

• But how do we decide which structures are better than 
others?
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BN Structure Learning

• The MLE of the conditional probability tables was given by the 
empirical probabilities
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𝐴𝐴
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𝐷𝐷
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A B C D

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 1

0 0 1 1



BN Structure Learning

• The MLE of the conditional probability tables was given by the 
empirical probabilities
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𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶

A B C D

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 1

0 0 1 1

A P(A)

0 4/5

1 1/5

A B P(B|A)

0 0 3/4

0 1 1/4

1 0 1

1 1 0

A C P(C|A)

0 0 1/4

0 1 3/4

1 0 1

1 1 0

B D P(D|B)

0 0 1/4

0 1 3/4

1 0 1

1 1 0



BN Structure Learning

• The MLE of the conditional probability tables was given by the 
empirical probabilities
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𝐴𝐴

𝐵𝐵𝐷𝐷 𝐶𝐶

A B C D

0 0 1 0

0 0 1 1

0 1 0 0

1 0 0 1

0 0 1 1

A P(A)

0 4/5

1 1/5

A B P(B|A)

0 0 3/4

0 1 1/4

1 0 1

1 1 0

A C P(C|A)

0 0 1/4

0 1 3/4

1 0 1

1 1 0

A D P(D|A)

0 0 1/2

0 1 1/2

1 0 0

1 1 1



BN Structure Learning

• Which model should be preferred?
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BN Structure Learning

• Which model should be preferred?
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𝐷𝐷

𝐶𝐶

𝐴𝐴

𝐵𝐵𝐷𝐷 𝐶𝐶

Which one has the highest log-likelihood given 
the data?



BN Structure Learning

• Which model should be preferred?
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𝐴𝐴

𝐵𝐵

𝐷𝐷

𝐶𝐶

𝐴𝐴

𝐵𝐵𝐷𝐷 𝐶𝐶

Which one has the highest log-likelihood given 
the data?



BN Structure Learning

• Determining the structure that maximizes the log-likelihood is 
not too difficult

• A complete DAG always maximizes the log-likelihood!

• This almost certainly results in overfitting

• Alternative is to attempt to learn simple structures

• Optimize the log-likelihood over simple networks
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Chow-Liu Trees

• Suppose that we want to find the best tree-structured BN that 
represents a given joint probability distribution

• Find the tree-structured BN that maximizes the likelihood

• Let’s consider the log-likelihood of a fixed tree 𝑇𝑇

• Assume that the edges are directed so that each node has 
exactly one parent
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Chow-Liu Trees

For a fixed tree:

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃,𝑇𝑇
𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent 𝑖𝑖

𝑁𝑁
log

N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖
𝑁𝑁

𝑁𝑁𝑥𝑥parent 𝑖𝑖
𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 log

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 + �

𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent i

𝑁𝑁 log

N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖
𝑁𝑁

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁
𝑁𝑁𝑥𝑥parent 𝑖𝑖

𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 log

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 + �

𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑇𝑇)

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

N𝑥𝑥i,𝑥𝑥𝑗𝑗

𝑁𝑁 log

N𝑥𝑥i,𝑥𝑥𝑗𝑗
𝑁𝑁

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁
𝑁𝑁𝑥𝑥𝑗𝑗
𝑁𝑁
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Chow-Liu Trees

For a fixed tree:

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃,𝑇𝑇
𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent 𝑖𝑖

𝑁𝑁
log

N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖
𝑁𝑁

𝑁𝑁𝑥𝑥parent 𝑖𝑖
𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 log

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 + �

𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent i

𝑁𝑁 log

N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖
𝑁𝑁

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁
𝑁𝑁𝑥𝑥parent 𝑖𝑖

𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 log

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 + �

𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑇𝑇)

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

N𝑥𝑥i,𝑥𝑥𝑗𝑗

𝑁𝑁 log

N𝑥𝑥i,𝑥𝑥𝑗𝑗
𝑁𝑁

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁
𝑁𝑁𝑥𝑥𝑗𝑗
𝑁𝑁

24

Doesn’t depend on the selected tree!



Chow-Liu Trees

For a fixed tree:

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃,𝑇𝑇
𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent 𝑖𝑖

𝑁𝑁
log

N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖
𝑁𝑁

𝑁𝑁𝑥𝑥parent 𝑖𝑖
𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 log

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 + �

𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent i

𝑁𝑁 log

N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖
𝑁𝑁

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁
𝑁𝑁𝑥𝑥parent 𝑖𝑖

𝑁𝑁

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 log

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁 + �

𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑇𝑇)

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

N𝑥𝑥i,𝑥𝑥𝑗𝑗

𝑁𝑁 log

N𝑥𝑥i,𝑥𝑥𝑗𝑗
𝑁𝑁

𝑁𝑁𝑥𝑥𝑖𝑖
𝑁𝑁
𝑁𝑁𝑥𝑥𝑗𝑗
𝑁𝑁
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This is the (empirical) mutual information, usually denoted 𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗)



Chow-Liu Trees

• To maximize the log-likelihood, it then suffices to choose the tree 𝑇𝑇
that maximizes

max
𝑇𝑇

�
𝑖𝑖,𝑗𝑗

𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗)

• This problem can be solved by finding the maximum weight 
spanning tree in the complete graph with edge weight 𝑤𝑤𝑖𝑖𝑖𝑖
given by the mutual information over the edge (𝑖𝑖, 𝑗𝑗)

• Greedy algorithm works:  at each step, pick the largest 
remaining edge that does not form a cycle when added to 
the already selected edges

26



Chow-Liu Trees

• To use this technique for learning, we simply compute the 
mutual information for each edge using the empirical 
probability distributions and then find the max-weight 
spanning tree

• As a result, we can learn tree-structured BNs in polynomial 
time 

• Can we generalize this to all DAGs?

27



Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information for 
the earlier samples

28
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Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information for 
the earlier samples
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Chow-Liu Trees:  Example

• Any directed tree (with one parent per node) over these 
edges maximizes the log-likelihood

• Why doesn’t the direction matter?

30
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