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Course Info.

• Instructor:  Nicholas Ruozzi

– Office:  ECSS 3.409

– Office hours:  Tues.  10am-11am

• TA:  ?

– Office hours and location ?

• Course website:  www.utdallas.edu/~nrr150130/cs6375/2017fa/
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Prerequisites

• CS 5343 (algorithms)

• “Mathematical sophistication”

– Basic probability

– Linear algebra

• Eigenvalues, eigenvectors, matrices, vectors, etc.

– Multivariate calculus

• Derivatives, integration, gradients, Lagrange multipliers, etc.

• I’ll review some concepts as we come to them, but you should 
brush up in areas that you aren’t as comfortable
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Grading

• 5-6 problem sets (50%) 

– See collaboration policy on the web

– Mix of theory and programming (in MATLAB or Python)

– Available and turned in on eLearning

– Approximately one assignment every two weeks

• Midterm Exam (20%)

• Final Exam (30%)

-subject to change-
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Course Topics

• Dimensionality reduction
– PCA
– Matrix Factorizations

• Learning
– Supervised, unsupervised, active, reinforcement, …
– Learning theory:  PAC learning, VC dimension
– SVMs & kernel methods
– Decision trees, k-NN, … 
– Parameter estimation:  Bayesian methods, MAP estimation, maximum likelihood 

estimation, expectation maximization, …
– Clustering:  k-means & spectral clustering

• Graphical models
– Neural networks
– Bayesian networks:  naïve Bayes

• Statistical methods
– Boosting, bagging, bootstrapping
– Sampling

• Ranking & Collaborative Filtering
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What is ML?

6



What is ML?

“A computer program is said to learn from experience E with 
respect to some task T and some performance measure P, if its 

performance on T, as measured by P, improves with experience E.” 

- Tom Mitchell
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Basic Machine Learning Paradigm

• Collect data

• Build a model using “training” data

• Use model to make predictions
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Supervised Learning

• Input: 𝑥𝑥(1),𝑦𝑦(1) , … , (𝑥𝑥(𝑀𝑀),𝑦𝑦(𝑀𝑀))

– 𝑥𝑥(𝑚𝑚) is the 𝑚𝑚𝑡𝑡𝑡 data item and 𝑦𝑦(𝑚𝑚) is the 𝑚𝑚𝑡𝑡𝑡 label

• Goal: find a function 𝑓𝑓 such that 𝑓𝑓 𝑥𝑥(𝑚𝑚) is a “good 
approximation” to 𝑦𝑦(𝑚𝑚)

– Can use it to predict 𝑦𝑦 values for previously unseen 𝑥𝑥
values
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Examples of Supervised Learning

• Spam email detection

• Handwritten digit recognition

• Stock market prediction

• More?
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Supervised Learning

• Hypothesis space:  set of allowable functions 𝑓𝑓:𝑋𝑋 → 𝑌𝑌

• Goal:  find the “best” element of the hypothesis space

– How do we measure the quality of 𝑓𝑓?

11



Types of Learning

• Supervised
– The training data includes the desired output

• Unsupervised
– The training data does not include the desired output

• Semi-supervised
– Some training data comes with the desired output

• Active learning
– Semi-supervised learning where the algorithm can ask for the 

correct outputs for specifically chosen data points
• Reinforcement learning

– The learner interacts with the world via allowable actions which 
change the state of the world and result in rewards

– The learner attempts to maximize rewards through trial and 
error
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Regression

𝑥𝑥

𝑦𝑦

13



Regression

𝑥𝑥

𝑦𝑦

Hypothesis class:  linear functions 𝑓𝑓 𝑥𝑥 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏

How do we measure the quality of the approximation?
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Linear Regression

• In typical regression applications, measure the fit using a 
squared loss function

𝐿𝐿 𝑓𝑓 =
1
𝑀𝑀
�
𝑚𝑚

𝑓𝑓 𝑥𝑥 𝑚𝑚 − 𝑦𝑦 𝑚𝑚 2

• Want to minimize the average loss on the training data

• For 2-D linear regression, the learning problem is then

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• For an unseen data point, 𝑥𝑥, the learning algorithm predicts 
𝑓𝑓(𝑥𝑥)

15



Linear Regression

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• How do we find the optimal 𝑎𝑎 and 𝑏𝑏?
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Linear Regression

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• How do we find the optimal 𝑎𝑎 and 𝑏𝑏?

– Solution 1:  take derivatives and solve (there is a closed 
form solution!)

– Solution 2:  use gradient descent
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Linear Regression

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• How do we find the optimal 𝑎𝑎 and 𝑏𝑏?

– Solution 1:  take derivatives and solve (there is a closed 
form solution!)

– Solution 2:  use gradient descent

• This approach is much more likely to be useful for general loss 
functions
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Gradient Descent

Iterative method to minimize a (convex) differentiable function 𝑓𝑓

• Pick an initial point 𝑥𝑥0

• Iterate until convergence

𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 − 𝛾𝛾𝑡𝑡𝛻𝛻𝑓𝑓(𝑥𝑥𝑡𝑡)

where 𝛾𝛾𝑡𝑡 is the 𝑡𝑡𝑡𝑡𝑡 step size (sometimes called learning rate)
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Gradient Descent

source: Wikipedia20



Gradient Descent

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• What is the gradient of this function?

• What does the gradient descent iteration look like for this 
simple regression problem?
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Linear Regression

• In higher dimensions, the linear regression problem is 
essentially the same only 𝑥𝑥(𝑚𝑚) ∈ ℝ𝑛𝑛

min
𝑎𝑎∈ℝ𝑛𝑛,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑇𝑇𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• Can still use gradient descent to minimize this

– Not much more difficult than the 𝑛𝑛 = 1 case
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Gradient Descent

• Gradient descent converges under certain technical 
conditions on the function 𝑓𝑓 and the step size 𝛾𝛾𝑡𝑡

– If 𝑓𝑓 is convex, then any fixed point of gradient descent 
must correspond to a global optimum of 𝑓𝑓

– In general, convergence is only guaranteed to a local 
optimum
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Regression

• What if we enlarge the hypothesis class?

– Quadratic functions

– 𝑘𝑘-degree polynomials

• Can we always learn better with a larger hypothesis class?
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Regression

• What if we enlarge the hypothesis class?

– Quadratic functions

– 𝑘𝑘-degree polynomials

• Can we always learn better with a larger hypothesis class?

– Larger hypothesis space always decreases the cost 
function, but this does NOT necessarily mean better 
predictive performance

– This phenomenon is known as overfitting 

• Ideally, we would select the simplest hypothesis consistent with 
the observed data
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Binary Classification

• Regression operates over a continuous set of outcomes

• Suppose that we want to learn a function 𝑓𝑓:𝑋𝑋 → {0,1}

• As an example:

How do we pick the hypothesis 
space?

How do we find the best 𝑓𝑓 in this 
space?

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝑥𝑥3 𝑦𝑦
1 0 0 1 0
2 0 1 0 1
3 1 1 0 1
4 1 1 1 0
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Binary Classification

• Regression operates over a continuous set of outcomes

• Suppose that we want to learn a function 𝑓𝑓:𝑋𝑋 → {0,1}

• As an example:

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝑥𝑥3 𝑦𝑦
1 0 0 1 0
2 0 1 0 1
3 1 1 0 1
4 1 1 1 0

How many functions with three 
binary inputs and one binary 
output are there?

28



Binary Classification

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝑥𝑥3 𝑦𝑦
0 0 0 ?

1 0 0 1 0
2 0 1 0 1

0 1 1 ?
1 0 0 ?
1 0 1 ?

3 1 1 0 1
4 1 1 1 0

28 possible functions

24 are consistent with the 
observations

How do we choose the best one?

What if the observations are noisy?
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Challenges in ML

• How to choose the right hypothesis space?

– Number of factors influence this decision:  difficulty of 
learning over the chosen space, how expressive the space 
is, … 

• How to evaluate the quality of our learned hypothesis?

– Prefer “simpler” hypotheses (to prevent overfitting)

– Want the outcome of learning to generalize to unseen data
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Challenges in ML

• How do we find the best hypothesis?

– This can be an NP-hard problem!

– Need fast, scalable algorithms if they are to be applicable 
to real-world scenarios
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