Collaborative Filtering

Nicholas Ruozzi
University of Texas at Dallas

Collaborative Filtering

- Combining information among collaborating entities to make recommendations and predictions
- Can be viewed as a supervised learning problem (with some caveats)
- Because of its many, many applications, it gets a special name

Examples

- Movie/TV recommendation (Netflix, Hulu, iTunes)
- Product recommendation (Amazon)
- Social recommendation (Facebook)
- News content recommendation (Yahoo)
- Priority inbox \& spam filtering (Google)
- Online dating (OK Cupid)

Netflix Movie Recommendation

Training Data

user	movie	rating
1	14	3
1	200	4
1	315	1
2	15	5
2	136	1
3	235	3
4	79	3

Test Data

user	movie	rating
1	50	$?$
1	28	$?$
2	94	$?$
2	32	$?$
3	11	$?$
4	99	$?$
4	54	$?$

Recommender Systems

- Content-based recommendations
- Recommendations based on a user profile (specific interests) or previously consumed content
- Collaborative filtering
- Recommendations based on the content preferences of similar users
- Hybrid approaches

Collaborative Filtering

- Widely-used recommendation approaches:
- k-nearest neighbor methods
- Matrix factorization based methods
- Predict the utility of items for a user based on the items previously rated by other like-minded users

Collaborative Filtering

- Make recommendations based on user/item similarities
- User similarity
- Works well if number of items is much smaller than the number of users
- Works well if the items change frequently
- Item similarity (recommend new items that were also liked by the same users)
- Works well if the number of users is small

k-Nearest Neighbor

- Create a similarity matrix for pairs of users (or items)
- Use $k-\mathrm{NN}$ to find the k closest users to a target user
- Use the ratings of the k nearest neighbors to make predictions

User-User Similarity

- Let $r_{u, i}$ be the rating of the $i^{\text {th }}$ item under user $u, \overline{r_{u}}$ be the average rating of user u, and $\operatorname{com}(u, v)$ be the set of items rated by both user u and user v
- One notion of similarity between user u and user v is given by Pearson's correlation coefficient

$$
\operatorname{sim}(u, v)=\frac{\sum_{i \in \operatorname{com}(u, v)}\left(r_{u, i}-\bar{r}_{u}\right)\left(r_{v, i}-\overline{r_{v}}\right)}{\sqrt{\sum_{i \in \operatorname{com}(u, v)}\left(r_{u, i}-\overline{r_{u}}\right)^{2}} \sqrt{\sum_{i \in \operatorname{com}(u, v)}\left(r_{v, i}-\bar{r}_{v}\right)^{2}}}
$$

User-User Similarity

- Let $r_{u, i}$ be the rating of the $i^{\text {th }}$ item under user $u, \overline{r_{u}}$ be the average rating of user u, and $\operatorname{com}(u, v)$ be the set of items rated by both user u and user v
- One notion of similarity between user u and user v is given by Pearson's correlation coefficient Empirical covariance of ratings

$$
\operatorname{sim}(u, v)=\frac{\sum_{i \in \operatorname{com}(u, v)}\left(r_{u, i}-\overline{r_{u}}\right)\left(r_{v, i}-\overline{r_{v}}\right)}{\sqrt{\sum_{i \in \operatorname{com}(u, v)}\left(r_{u, i}-\overline{r_{u}}\right)^{2}} \sqrt{\sum_{i \in \operatorname{com}(u, v)}\left(r_{v, i}-\bar{r}_{v}\right)^{2}}}
$$

User-User Similarity

- Let $r_{u, i}$ be the rating of the $i^{\text {th }}$ item under user $u, \overline{r_{u}}$ be the average rating of user u, and $\operatorname{com}(u, v)$ be the set of items rated by both user u and user v
- One notion of similarity between user u and user v is given by Pearson's correlation coefficient

$$
\operatorname{sim}(u, v)=\frac{\sum_{i \in \operatorname{com}(u, v)}\left(r_{u, i}-\bar{r}_{u}\right)\left(r_{v, i}-\bar{r}_{v}\right)}{\sqrt{\sum_{i \in \operatorname{com}(u, v)}\left(r_{u, i}-\bar{r}_{u}\right)^{2} \sqrt{\sum_{i \in \operatorname{com}(u, v)}\left(r_{v, i}-\bar{r}_{v}\right)^{2}}}}
$$

Empirical standard deviation of user u's ratings for common items

User-User Similarity

- Let $n n(u)$ denote the set of k-NN to u
- $p_{u, i}$, the predicted rating for the $i^{t h}$ item of user u, is given by

$$
p_{u, i}=\overline{r_{u}}+\frac{\sum_{v \in n n(u)} \operatorname{sim}(u, v) \cdot\left(r_{v, i}-\overline{r_{v}}\right)}{\sum_{v \in n n(u)}|\operatorname{sim}(u, v)|}
$$

- This is the average rating of user u plus the weighted average of the ratings of u 's k nearest neighbors

User-User Similarity

- Issue: could be expensive to find the k-NN if the number of users is very large
- Possible solutions?

Item-Item Similarity

- Use Pearson's correlation coefficient to compute the similarity between pairs of items
- Let $\operatorname{com}(i, j)$ be the set of users common to items i and j
- The similarity between items i and j is given by

$$
\operatorname{sim}(i, j)=\frac{\sum_{u \in \operatorname{com}(i, j)}\left(r_{u, i}-\overline{r_{u}}\right)\left(r_{u, j}-\overline{r_{u}}\right)}{\sqrt{\sum_{u \in \operatorname{com}(i, j)}\left(r_{u, i}-\bar{r}_{u}\right)^{2}} \sqrt{\sum_{u \in \operatorname{com}(i, j)}\left(r_{u, j}-\overline{r_{u}}\right)^{2}}}
$$

Item-Item Similarity

- Let $n n(i)$ denote the set of k-NN to i
- $p_{u, i}$, the predicted rating for the $i^{t h}$ item of user u, is given by

$$
p_{u, i}=\frac{\sum_{j \in n n(i)} \operatorname{sim}(i, j) \cdot\left(r_{u, j}\right)}{\sum_{j \in n n(i)}|\operatorname{sim}(i, j)|}
$$

- This is the weighted average of the ratings of i 's k nearest neighbors

k-Nearest Neighbor

- Easy to train
- Easily adapts to new users/items
- Can be difficult to scale (finding closest pairs requires forming the similarity matrix)
- Less of a problem for item-item assuming number of items is much smaller than the number of users
- Not sure how to choose k
- Can lead to poor accuracy

k-Nearest Neighbor

- Tough to use without any ratings information to start with
- "Cold Start"
- New users should rate some initial items to have personalized recommendations
- Could also have new users describe tastes, etc.
- New Item/Movie may require content analysis or a non-CF based approach

Matrix Factorization

- There could be a number of latent factors that affect the recommendation
- Style of movie: serious vs. funny vs. escapist
- Demographic: is it preferred more by men or women
- Alternative approach: view CF as a matrix factorization problem

Matrix Factorization

- Express a matrix $M \in \mathbb{R}^{m \times n}$ approximately as a product of factors $A \in \mathbb{R}^{m \times p}$ and $B \in \mathbb{R}^{p \times n}$

$$
M \sim A \cdot B
$$

- Approximate the user \times items matrix as a product of matrices in this way
- Similar to SVD decompositions that we saw earlier (SVD can't be used for a matrix with missing entries)
- Think of the entries of M as corresponding to an inner product of latent factors

Matrix Factorization

[from slides of Alex Smola]

Matrix Factorization

users

[from slides of Alex Smola]

Matrix Factorization

[from slides of Alex Smola]

Matrix Factorization

- We can express finding the "closest" matrix as an optimization problem

$$
\min _{A, B} \sum_{(u, i)}\left(M_{u, i}-\left\langle A_{u,:}, B_{:, i}\right\rangle\right)^{2}+\lambda\left(\|A\|_{F}^{2}+\|B\|_{F}^{2}\right)
$$

Matrix Factorization

- We can express finding the "closest" matrix as an optimization problem

Computes the error
in the approximation
of the observed
matrix entries

Matrix Factorization

- We can express finding the "closest" matrix as an optimization problem

$$
\min _{A, B} \sum_{(u, i)}\left(M_{u, i}-\left\langle A_{u, i}, B_{:, i}\right\rangle\right)^{2}+\lambda\left(\|A\|_{F}^{2}+\|B\|_{F}^{2}\right)
$$

Regularization preferences matrices with small Frobenius norm

Matrix Factorization

- We can express finding the "closest" matrix as an optimization problem

$$
\min _{A, B} \sum_{(u, i)}\left(M_{u, i}-\left\langle A_{u,:}, B_{:, i}\right\rangle\right)^{2}+\lambda\left(\|A\|_{F}^{2}+\|B\|_{F}^{2}\right)
$$

- How to optimize this objective?

Matrix Factorization

- We can express finding the "closest" matrix as an optimization problem

$$
\min _{A, B} \sum_{(u, i)}\left(M_{u, i}-\left\langle A_{u,:}, B_{:, i}\right\rangle\right)^{2}+\lambda\left(\|A\|_{F}^{2}+\|B\|_{F}^{2}\right)
$$

- How to optimize this objective?
- (Stochastic) gradient descent!

Extensions

- The basic matrix factorization approach doesn't take into account the observation that some people are tougher reviewers than others and that some movies are over-hyped
- Can correct for this by introducing a bias term for each user and a global bias

$$
\begin{aligned}
\min _{A, B, \mu, b} & \sum_{(u, i)}\left(M_{u, i}-\mu-b_{i}-b_{u}-\left\langle A_{u,:}, B_{:, i}\right\rangle\right)^{2} \\
& +\lambda\left(\|A\|_{F}^{2}+\|B\|_{F}^{2}\right)+v\left(\sum_{i} b_{i}^{2}+\sum_{u} b_{u}^{2}\right)
\end{aligned}
$$

