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Announcements

• Homework 1 available soon

• Piazza – join if you haven’t already

• Reminder:  my office hours are 10am-11am on Tuesdays in 
ECSS 3.409

• Schedule and lecture notes available through the course 
website (see the link on eLearning)
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Binary Classification

• Input 𝑥𝑥 1 , 𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 , 𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

+
+

+ +

+

+
+

+

+

++ +

_
_

_ _

_

_

_

_ _
_

3

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 < 0

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 > 0
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𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0
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𝑤𝑤 is called the 
vector of 
weights and 𝑏𝑏 is 
called the bias



What If the Data Isn‘t Separable?

• Input 𝑥𝑥 1 , 𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 , 𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)
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What is a good 
hypothesis space for 

this problem?
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Adding Features

• The idea:

– Given the observations 𝑥𝑥(1), … , 𝑥𝑥(𝑀𝑀), construct a feature vectors 
𝜙𝜙 𝑥𝑥 1 , … , 𝜙𝜙(𝑥𝑥(𝑀𝑀))

– Use 𝜙𝜙 𝑥𝑥(1) , … , 𝜙𝜙 𝑥𝑥(𝑀𝑀) instead of 𝑥𝑥(1), … , 𝑥𝑥(𝑀𝑀) in the learning 
algorithm

– Goal is to choose 𝜙𝜙 so that 𝜙𝜙 𝑥𝑥(1) , … , 𝜙𝜙 𝑥𝑥(𝑀𝑀) are linearly separable

– Learn linear separators of the form 𝑤𝑤𝑇𝑇𝜙𝜙 𝑥𝑥 (instead of 𝑤𝑤𝑇𝑇𝑥𝑥)

• Warning: more expressive features can lead to overfitting!
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Support Vector Machines

+

+

+
+

+

+

+

+

+

++
+

_

_

_

_

_

_

_

_ _

_

• How can we decide between perfect classifiers?

8



Support Vector Machines

+

+

+
+

+

+

+

+

+

++
+

_

_

_

_

_

_

_

_ _

_

• How can we decide between perfect classifiers?

9



Support Vector Machines

+

+

+
+

+

+

+

+

+

++
+

_

_

_

_

_

_

_

_ _

_

• Define the margin to be the distance of the closest data point 
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• Support vector machines (SVMs)

• Choose the classifier with the largest margin

– Has good practical and theoretical performance

Support Vector Machines

+
+

+
+

+

+
+

+

+

++

+
_

_

_

_

_

_

_

_ _

_

11



• In 𝑛𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

with 𝑤𝑤 ∈ ℝ𝑛𝑛, 𝑏𝑏 ∈ ℝ

• The vector 𝑤𝑤 is sometimes called the normal vector of the 
hyperplane

Some Geometry

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑤𝑤
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• In 𝑛𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

• Note that this equation is scale invariant for any scalar 𝑐𝑐

𝑐𝑐 ⋅ 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

Some Geometry

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑤𝑤
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• The distance between a point 𝑦𝑦 and a hyperplane 𝑤𝑤𝑇𝑇 + 𝑏𝑏 = 0
is the length of the segment perpendicular to the line to the 
point 𝑦𝑦

• The vector from 𝑦𝑦 to 𝑧𝑧 is given by

𝑦𝑦 − 𝑧𝑧 = 𝑦𝑦 − 𝑧𝑧
𝑤𝑤
𝑤𝑤

Some Geometry

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦
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• By scale invariance, we can assume that 𝑐𝑐 = 1

• The maximum margin is always attained by choosing 𝑤𝑤𝑇𝑇𝑥𝑥 +
𝑏𝑏 = 0 so that it is equidistant from the closest data point 
classified as +1 and the closest data point classified as -1

Scale Invariance

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝑐𝑐
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• We want to maximize the margin subject to the constraints 
that

𝑦𝑦(𝑖𝑖) 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1

• But how do we compute the size of the margin?

Scale Invariance
𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝑐𝑐 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = −𝑐𝑐
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Putting it all together

𝑦𝑦 − 𝑧𝑧 = 𝑦𝑦 − 𝑧𝑧
𝑤𝑤
𝑤𝑤

and
𝑤𝑤𝑇𝑇𝑦𝑦 + 𝑏𝑏 = 1
𝑤𝑤𝑇𝑇𝑧𝑧 + 𝑏𝑏 = 0

Some Geometry

𝑤𝑤𝑇𝑇 𝑦𝑦 − 𝑧𝑧 = 1
and
𝑤𝑤𝑇𝑇 𝑦𝑦 − 𝑧𝑧 = 𝑦𝑦 − 𝑧𝑧 𝑤𝑤

which gives
𝑦𝑦 − 𝑧𝑧 = 1/ 𝑤𝑤

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 1 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = −1
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SVMs

• This analysis yields the following optimization problem

max
𝑤𝑤

1
𝑤𝑤

such that
𝑦𝑦(𝑖𝑖) 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1, for all 𝑖𝑖

• Or, equivalently,
min
𝑤𝑤

𝑤𝑤 2

such that
𝑦𝑦(𝑖𝑖) 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1, for all 𝑖𝑖
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SVMs

min
𝑤𝑤

𝑤𝑤 2

such that
𝑦𝑦(𝑖𝑖) 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1, for all 𝑖𝑖

• This is a standard quadratic programming problem

– Falls into the class of convex optimization problems

– Can be solved with many specialized optimization tools 
(e.g., quadprog() in MATLAB)
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SVMs

• Where does the name come from?

– The set of all data points such that 𝑦𝑦(𝑖𝑖)(𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏) = 1
are called support vectors

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 1 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = −1
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SVMs

• What if the data isn’t linearly separable?

– Use feature vectors

– Relax the constraints  (coming soon)

• What if we want to do more than just binary classification 
(i.e., if 𝑦𝑦 ∈ {1,2,3})?
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Multiclass Classification
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One-Versus-All SVMs
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One-Versus-All SVMs
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Regions correctly classified by exactly one classifier
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One-Versus-All SVMs

• Compute a classifier for each label versus the remaining labels 
(i.e., and SVM with the selected label as plus and the 
remaining labels changed to minuses)

• Let 𝑓𝑓𝑘𝑘 𝑥𝑥 = 𝑤𝑤 𝑘𝑘 𝑇𝑇𝑥𝑥 + 𝑏𝑏(𝑘𝑘) be the classifier for the 𝑘𝑘𝑡𝑡𝑡 label

• For a new datapoint 𝑥𝑥, classify it as

𝑘𝑘′ ∈ argmax𝑘𝑘𝑓𝑓𝑘𝑘(𝑥𝑥)

• Drawbacks:

– If there are 𝐿𝐿 possible labels, requires learning 𝐿𝐿 classifiers over the 
entire data set

– Doesn’t make sense if the classifiers are not comparable
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One-Versus-All SVMs
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Regions in which points are classified by highest value of 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏
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One-Versus-One SVMs

• Alternative strategy is to construct a classifier for all possible 
pairs of labels

• Given a new data point, can classify it by majority vote (i.e., 
find the most common label among all of the possible 
classifiers)

• If there are 𝐿𝐿 labels, requires computing 𝐿𝐿2 different 
classifiers each of which uses only a fraction of the data

• Drawbacks:  Can overfit if some pairs of labels do not have a 
significant amount of data (plus it can be computationally 
expensive)
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One-Versus-One SVMs
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