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The Strategy So Far...

• Choose hypothesis space

• Construct loss function (ideally convex)

• Minimize loss to “learn” correct parameters
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General Optimization

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
ℎ𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1, … ,𝑝𝑝

A mathematical detour, we’ll come back to SVMs soon!
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General Optimization

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
ℎ𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1, … ,𝑝𝑝

𝑓𝑓0 is not necessarily convex
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General Optimization

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
ℎ𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1, … ,𝑝𝑝

Constraints do not need to 
be linear
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Lagrangian

𝐿𝐿 𝑥𝑥, 𝜆𝜆, 𝜈𝜈 = 𝑓𝑓0 𝑥𝑥 + �
𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖𝑓𝑓𝑖𝑖 𝑥𝑥 + �
𝑖𝑖=1

𝑝𝑝

𝜈𝜈𝑖𝑖ℎ𝑖𝑖(𝑥𝑥)

• Incorporate constraints into a new objective function

• 𝜆𝜆 ≥ 0 and 𝜈𝜈 are vectors of Lagrange multipliers

• The Lagrange multipliers can be thought of as enforcing soft 
constraints
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Duality

• Construct a dual function by minimizing the Lagrangian over 
the primal variables

𝑔𝑔 𝜆𝜆, 𝜈𝜈 = inf
𝑥𝑥
𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)

• 𝑔𝑔 𝜆𝜆, 𝜈𝜈 = −∞ whenever the Lagrangian is not bounded from 
below for a fixed 𝜆𝜆 and 𝜈𝜈

7



The Primal Problem

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
ℎ𝑖𝑖 𝑥𝑥 = 0, 𝑖𝑖 = 1, … ,𝑝𝑝

Equivalently,

inf
𝑥𝑥

sup
𝜆𝜆≥0,𝜈𝜈

𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)
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The Dual Problem

sup
𝜆𝜆≥0,𝜈𝜈

𝑔𝑔(𝜆𝜆, 𝜈𝜈)

Equivalently,
sup
𝜆𝜆≥0,𝜈𝜈

inf
𝑥𝑥
𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)

• The dual problem is always concave, even if the primal 
problem is not convex
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Primal vs. Dual

sup
𝜆𝜆≥0,𝜈𝜈

inf
𝑥𝑥
𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈) ≤ inf

𝑥𝑥
sup
𝜆𝜆≥0,𝜈𝜈

𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)

• Why?
• 𝑔𝑔 𝜆𝜆, 𝜈𝜈 ≤ 𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈) for all 𝑥𝑥

• 𝐿𝐿 𝑥𝑥′, 𝜆𝜆, 𝜈𝜈 ≤ 𝑓𝑓0(𝑥𝑥′) for any feasible 𝑥𝑥′, 𝜆𝜆 ≥ 0

• 𝑥𝑥 is feasible if it satisfies all of the constraints

• Let 𝑥𝑥∗ be the optimal solution to the primal problem and  
𝜆𝜆 ≥ 0

𝑔𝑔 𝜆𝜆, 𝜈𝜈 ≤ 𝐿𝐿 𝑥𝑥∗, 𝜆𝜆, 𝜈𝜈 ≤ 𝑓𝑓0 𝑥𝑥∗
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Simple Examples

• Minimize 𝑥𝑥2 + 𝑦𝑦2 subject to 𝑥𝑥 + 𝑦𝑦 ≥ 1

• Minimize 𝑥𝑥 log 𝑥𝑥 + 𝑦𝑦 log 𝑦𝑦 + 𝑧𝑧 log 𝑧𝑧 subject to 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 1
and 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ≥ 0
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Duality

• Under certain conditions, the two optimization problems are 
equivalent

sup
𝜆𝜆≥0,𝜈𝜈

inf
𝑥𝑥
𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈) = inf

𝑥𝑥
sup
𝜆𝜆≥0,𝜈𝜈

𝐿𝐿(𝑥𝑥, 𝜆𝜆, 𝜈𝜈)

• This is called strong duality

• If the inequality is strict, then we say that there is a duality 
gap 

• Size of gap measured by the difference between the two 
sides of the inequality

12



Slater’s Condition

For any optimization problem of the form

min
𝑥𝑥∈ℝ𝑛𝑛

𝑓𝑓0(𝑥𝑥)

subject to:

𝑓𝑓𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚
𝐴𝐴𝑥𝑥 = 𝑏𝑏

where 𝑓𝑓0, … ,𝑓𝑓𝑚𝑚 are convex functions, strong duality holds if 
there exists an 𝑥𝑥 such that

𝑓𝑓𝑖𝑖 𝑥𝑥 < 0, 𝑖𝑖 = 1, … ,𝑚𝑚
𝐴𝐴𝑥𝑥 = 𝑏𝑏
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Dual SVM

min
𝑤𝑤

1
2

𝑤𝑤 2

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1, for all 𝑖𝑖

• Note that Slater’s condition holds as long as the data is 
linearly separable
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Dual SVM

𝐿𝐿 𝑤𝑤, 𝑏𝑏, 𝜆𝜆 =
1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + �

𝑖𝑖

𝜆𝜆𝑖𝑖(1 − 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏))

Convex in 𝑤𝑤, so take derivatives to form the dual

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑘𝑘

= 𝑤𝑤𝑘𝑘 + �
𝑖𝑖

−𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑘𝑘
(𝑖𝑖) = 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏

= �
𝑖𝑖

−𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0
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Dual SVM

𝐿𝐿 𝑤𝑤, 𝑏𝑏, 𝜆𝜆 =
1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + �

𝑖𝑖

𝜆𝜆𝑖𝑖(1 − 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏))

Convex in 𝑤𝑤, so take derivatives to form the dual

𝑤𝑤 = �
𝑖𝑖

𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥(𝑖𝑖)

�
𝑖𝑖

𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0
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Dual SVM

max
𝜆𝜆≥0

−
1
2
�
𝑖𝑖

�
𝑗𝑗

𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥 𝑖𝑖 𝑇𝑇𝑥𝑥 𝑗𝑗 + �
𝑖𝑖

𝜆𝜆𝑖𝑖

such that

�
𝑖𝑖

𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0

• By strong duality, solving this problem is equivalent to solving 
the primal problem

• Given the optimal 𝜆𝜆, we can easily construct 𝑤𝑤 (𝑏𝑏 can be 
found by complementary slackness)
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Complementary Slackness

• Suppose that there is zero duality gap

• Let 𝑥𝑥∗ be an optimum of the primal and (𝜆𝜆∗, 𝜈𝜈∗) be an 
optimum of the dual
𝑓𝑓0 𝑥𝑥∗ = 𝑔𝑔 𝜆𝜆∗, 𝜈𝜈∗

= inf
𝑥𝑥

𝑓𝑓0 𝑥𝑥 + �
𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖∗𝑓𝑓𝑖𝑖 𝑥𝑥 + �
𝑖𝑖=1

𝑝𝑝

𝜈𝜈𝑖𝑖∗ℎ𝑖𝑖(𝑥𝑥)

≤ 𝑓𝑓0 𝑥𝑥∗ + �
𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖∗𝑓𝑓𝑖𝑖 𝑥𝑥∗ + �
𝑖𝑖=1

𝑝𝑝

𝜈𝜈𝑖𝑖∗ℎ𝑖𝑖 𝑥𝑥∗

= 𝑓𝑓0 𝑥𝑥∗ + �
𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖∗𝑓𝑓𝑖𝑖 𝑥𝑥∗

≤ 𝑓𝑓0 𝑥𝑥∗
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Complementary Slackness

• This means that

�
𝑖𝑖=1

𝑚𝑚

𝜆𝜆𝑖𝑖∗𝑓𝑓𝑖𝑖 𝑥𝑥∗ = 0

• As 𝜆𝜆 ≥ 0 and 𝑓𝑓𝑖𝑖 𝑥𝑥𝑖𝑖∗ ≤ 0, this can only happen  if  𝜆𝜆𝑖𝑖∗𝑓𝑓𝑖𝑖 𝑥𝑥∗ =
0 for all 𝑖𝑖

• Put another way, 

• If 𝑓𝑓𝑖𝑖 𝑥𝑥∗ < 0 (i.e., the constraint is not tight), then 𝜆𝜆𝑖𝑖∗ = 0

• If 𝜆𝜆𝑖𝑖∗ > 0, then 𝑓𝑓𝑖𝑖(𝑥𝑥∗) = 0

• ONLY applies when there is no duality gap
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Dual SVM

max
𝜆𝜆≥0

−
1
2
�
𝑖𝑖

�
𝑗𝑗

𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥 𝑖𝑖 𝑇𝑇𝑥𝑥 𝑗𝑗 + �
𝑖𝑖

𝜆𝜆𝑖𝑖

such that

�
𝑖𝑖

𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0

• By complementary slackness, 𝜆𝜆𝑖𝑖∗ > 0 means that 𝑥𝑥(𝑖𝑖) is a 
support vector (can then solve for 𝑏𝑏 using 𝑤𝑤)
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Dual SVM

max
𝜆𝜆≥0

−
1
2
�
𝑖𝑖

�
𝑗𝑗

𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥 𝑖𝑖 𝑇𝑇𝑥𝑥 𝑗𝑗 + �
𝑖𝑖

𝜆𝜆𝑖𝑖

such that

�
𝑖𝑖

𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0

• Takes 𝑂𝑂(𝑛𝑛2) time just to evaluate the objective function

• Active area of research to try to speed this up
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