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Eigenvalues

• 𝜆𝜆 is an eigenvalue of a matrix 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 if the linear system 
𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆 has at least one non-zero solution

• If 𝐴𝐴𝐴𝐴 = 𝜆𝜆𝜆𝜆 we say that 𝜆𝜆 is an eigenvalue of 𝐴𝐴 with 
corresponding eigenvector 𝑥𝑥

• Could be multiple eigenvectors for the same 𝜆𝜆
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Eigenvalues of Symmetric Matrices

• If 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 is symmetric, then it has 𝑛𝑛 linearly independent 
eigenvectors 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 corresponding to 𝑛𝑛 real eigenvalues

• Moreover, it has 𝑛𝑛 linearly independent orthonormal
eigenvectors

• 𝑣𝑣𝑖𝑖𝑇𝑇𝑣𝑣𝑗𝑗 = 0 for all 𝑖𝑖 ≠ 𝑗𝑗

• 𝑣𝑣𝑖𝑖𝑇𝑇𝑣𝑣𝑖𝑖 = 1 for all 𝑖𝑖
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Eigenvalues of Symmetric Matrices

• If 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 is symmetric, then it has 𝑛𝑛 linearly independent 
eigenvectors 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛 corresponding to 𝑛𝑛 real eigenvalues

• A symmetric matrix is positive definite if and only if all of its 
eigenvalues are positive

• The orthonormal eigenvectors form a basis of ℝ𝑛𝑛 (similar 
to the standard coordinate axes)
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Examples

• The 2x2 identity matrix has all of its eigenvalues equal to 1 (it 

is positive definite) with orthonormal eigenvectors 1
0 and 0

1

• The matrix 1 1
1 1 has eigenvalues 0 and 2 with orthonormal 

eigenvectors 
−1
2
1
2

and
1
2
1
2

• The matrix 2 1
1 2 has eigenvalues 1 and 3 with orthonormal 

eigenvectors 
−1
2
1
2

and 
1
2
1
2
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Eigenvalues

• Suppose 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 is symmetric

• Any 𝑥𝑥 ∈ ℝ𝑛𝑛 can be written as 𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖𝑣𝑣𝑖𝑖 where 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛
are the eigenvectors of 𝐴𝐴

• 𝐴𝐴𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖𝑐𝑐𝑖𝑖𝑣𝑣𝑖𝑖

• 𝐴𝐴2𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖2𝑐𝑐𝑖𝑖𝑣𝑣𝑖𝑖
⁞

• 𝐴𝐴𝑡𝑡𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖𝑡𝑡𝑐𝑐𝑖𝑖𝑣𝑣𝑖𝑖
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Eigenvalues

• Suppose 𝐴𝐴 ∈ ℝ𝑛𝑛×𝑛𝑛 is symmetric

• Any 𝑥𝑥 ∈ ℝ𝑛𝑛 can be written as 𝑥𝑥 = ∑𝑖𝑖=1𝑛𝑛 𝑐𝑐𝑖𝑖𝑣𝑣𝑖𝑖 where 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛
are the eigenvectors of 𝐴𝐴

• 𝑐𝑐𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑇𝑇𝑥𝑥, this is the projection of 𝑥𝑥 along the line given by 
𝑣𝑣𝑖𝑖 (assuming that 𝑣𝑣𝑖𝑖 is a unit vector)
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Eigenvalues of Symmetric Matrices

• Let 𝑄𝑄 ∈ ℝ𝑛𝑛×𝑛𝑛 be the matrix whose 𝑖𝑖𝑡𝑡𝑡 column is 𝑣𝑣𝑖𝑖 and 𝐷𝐷 ∈
ℝ𝑛𝑛×𝑛𝑛 be the diagonal matrix such that 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖

• 𝐴𝐴𝐴𝐴 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑇𝑇𝑥𝑥

• Can throw away some eigenvectors to approximate this 
quantity

• For example, let 𝑄𝑄𝑘𝑘 be the matrix formed by keeping 
only the top 𝑘𝑘 eigenvectors and 𝐷𝐷𝑘𝑘 be the diagonal 
matrix whose diagonal consists of the top 𝑘𝑘 eigenvalues
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Frobenius Norm

• The Frobenius norm is a matrix norm given by

𝐴𝐴 𝐹𝐹 = �
𝑖𝑖=1

𝑛𝑛

�
𝑗𝑗=1

𝑛𝑛

𝐴𝐴𝑖𝑖𝑖𝑖
2

• 𝑄𝑄𝑘𝑘𝐷𝐷𝑘𝑘𝑄𝑄𝑘𝑘𝑇𝑇 is the best rank 𝑘𝑘 approximation of the symmetric 
matrix 𝐴𝐴 with respect to the Frobenius norm

𝑄𝑄𝑘𝑘𝐷𝐷𝑘𝑘𝑄𝑄𝑘𝑘𝑇𝑇 = argmin
𝐵𝐵∈ℝ𝑛𝑛×𝑛𝑛𝑠𝑠.𝑡𝑡. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐵𝐵 =𝑘𝑘

𝐴𝐴 − 𝐵𝐵 𝐹𝐹
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Principal Component Analysis

• Principle component analysis

• Can be used to reduce the dimensionality of the data while 
still maintaining a good approximation of the sample mean 
and variance

• Can also be used for selecting good features that are 
combinations of the input features

• Unsupervised – just finds a good representation of the 
data in terms of combinations of the input features
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Principal Component Analysis

• Input a collection of data points sampled from some 
distribution 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝 ∈ ℝ𝑛𝑛

• Construct the matrix 𝑊𝑊 ∈ ℝ𝑛𝑛×𝑝𝑝 whose 𝑖𝑖𝑡𝑡𝑡 column is 

𝑥𝑥𝑖𝑖 −
∑𝑗𝑗 𝑥𝑥𝑗𝑗
𝑝𝑝

• The matrix 𝑊𝑊𝑊𝑊𝑇𝑇 is the sample covariance matrix

• 𝑊𝑊𝑊𝑊𝑇𝑇 is symmetric and positive semidefinite
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Principal Component Analysis

• PCA finds a set of orthogonal vectors that best explain the 
variance of the sample covariance matrix

• From our previous discussion, these are exactly the 
eigenvectors of 𝑊𝑊𝑊𝑊𝑇𝑇

• We can discard the eigenvectors corresponding to small 
magnitude eigenvalues to yield an approximation

• Simple algorithm to describe, MATLAB and other 
programming languages have built in support for 
eigenvector computation
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PCA in Practice

• Forming the matrix 𝑊𝑊𝑊𝑊𝑇𝑇 can require a lot of memory 
(especially if 𝑛𝑛 ≫ 𝑝𝑝)

• Need a faster way to compute this without forming the 
matrix explicitly

• Typical approach: use the singular value decomposition

13



Singular Value Decomposition (SVD)

• Every matrix 𝐵𝐵 ∈ ℝ𝑛𝑛×𝑝𝑝 admits a decomposition of the form

𝐵𝐵 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇

• where 𝑈𝑈 ∈ ℝ𝑛𝑛×𝑛𝑛 is an orthogonal matrix, Σ ∈ ℝ𝑛𝑛×𝑝𝑝 is 
non-negative diagonal matrix, and 𝑉𝑉 ∈ ℝ𝑝𝑝×𝑝𝑝 is an 
orthogonal matrix

• A matrix 𝐶𝐶 ∈ ℝ𝑚𝑚×𝑚𝑚 is orthogonal if 𝐶𝐶𝑇𝑇 = 𝐶𝐶−1.  
Equivalently, the rows and columns of 𝐶𝐶 are orthonormal 
vectors
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Singular Value Decomposition (SVD)

• Every matrix 𝐵𝐵 ∈ ℝ𝑛𝑛×𝑝𝑝 admits a decomposition of the form

𝐵𝐵 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇

• where 𝑈𝑈 ∈ ℝ𝑛𝑛×𝑛𝑛 is an orthogonal matrix, Σ ∈ ℝ𝑛𝑛×𝑝𝑝 is 
non-negative diagonal matrix, and 𝑉𝑉 ∈ ℝ𝑝𝑝×𝑝𝑝 is an 
orthogonal matrix

• A matrix 𝐶𝐶 ∈ ℝ𝑚𝑚×𝑚𝑚 is orthogonal if 𝐶𝐶𝑇𝑇 = 𝐶𝐶−1.  
Equivalently, the rows and columns of 𝐶𝐶 are orthonormal 
vectors

Diagonal elements of Σ called 
singular values
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SVD and PCA

• Returning to PCA

• Let 𝑊𝑊 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 be the SVD of 𝑊𝑊

• 𝑊𝑊𝑊𝑊𝑇𝑇 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇𝑉𝑉Σ𝑇𝑇𝑈𝑈𝑇𝑇 = 𝑈𝑈ΣΣ𝑇𝑇𝑈𝑈𝑇𝑇

• If we can compute the SVD of 𝑊𝑊, then we don't need to 
form the matrix 𝑊𝑊𝑊𝑊𝑇𝑇
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SVD and PCA

• For any matrix 𝐴𝐴, 𝐴𝐴𝐴𝐴𝑇𝑇 is symmetric and positive semidefinite

• Let 𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 be the SVD of 𝐴𝐴

• 𝐴𝐴𝐴𝐴𝑇𝑇 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇𝑉𝑉Σ𝑇𝑇𝑈𝑈𝑇𝑇 = 𝑈𝑈ΣΣ𝑇𝑇𝑈𝑈𝑇𝑇

• 𝑈𝑈 must be a matrix of eigenvectors of 𝐴𝐴𝐴𝐴𝑇𝑇

• The eigenvalues of 𝐴𝐴𝐴𝐴𝑇𝑇 are all non-negative because 
ΣΣ𝑇𝑇 = Σ2 which are the square of the singular values of 𝐴𝐴
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An Example:  “Eigenfaces”

• Let’s suppose that our data is a collection of images of the 
faces of individuals
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An Example:  “Eigenfaces”

• Let’s suppose that our data is a collection of images of the 
faces of individuals

• The goal is, given the "training data", to correctly match 
new images to the training data

• Let’s suppose that each image is an s × 𝑠𝑠 array of pixels: 
𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑛𝑛, 𝑛𝑛 = 𝑠𝑠2

• As before, construct the matrix 𝑊𝑊 ∈ ℝ𝑛𝑛×𝑝𝑝 whose 𝑖𝑖𝑡𝑡𝑡

column is 𝑥𝑥𝑖𝑖 − ∑𝑗𝑗
𝑥𝑥𝑗𝑗
𝑝𝑝
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An Example:  “Eigenfaces”

• Forming the matrix 𝑊𝑊𝑊𝑊𝑇𝑇 requires a lot of memory 

• 𝑠𝑠 = 256 means 𝑊𝑊𝑊𝑊𝑇𝑇 is 65536 × 65536

• Need a faster way to compute this without forming the 
matrix explicitly

• Could use the singular value decomposition
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An Example:  “Eigenfaces”

• A different approach when 𝑝𝑝 ≪ 𝑛𝑛

• Compute the eigenvectors of 𝐴𝐴𝑇𝑇𝐴𝐴 (this is an 𝑝𝑝 × 𝑝𝑝 matrix)

• Let 𝑣𝑣 be an eigenvector of 𝐴𝐴𝑇𝑇𝐴𝐴 with eigenvalue 𝜆𝜆

• 𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴𝑣𝑣 = 𝜆𝜆𝜆𝜆𝜆𝜆

• This means that 𝐴𝐴𝑣𝑣 is an eigenvector of 𝐴𝐴𝐴𝐴𝑇𝑇with 
eigenvalue 𝜆𝜆 (or 0)

• Save the top 𝑘𝑘 eigenvectors - called eigenfaces in this 
example
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An Example:  “Eigenfaces”

• The data in the matrix is “training data”

• Given a new image, we’d like to determine which, if any, 
member of the data set that it is most similar to

• Step 1:  Compute the projection of the recentered, new image 
onto each of the 𝑘𝑘 eigenvectors

• This gives us a vector of weights 𝑐𝑐1, … , 𝑐𝑐𝑘𝑘

22



An Example:  “Eigenfaces”

• The data in the matrix is “training data”

• Given a new image, we’d like to determine which, if any, 
member of the data set that it is most similar to

• Step 2:  Determine if the input image is close to one of the 
faces in the data set

• If the distance between the input and it's approximation is 
too large, then the input is likely not a face
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An Example:  “Eigenfaces”

• The data in the matrix is “training data”

• Given a new image, we’d like to determine which, if any, 
member of the data set that it is most similar to

• Step 3:  Find the person in the training data that is closest to 
the new input 

• Replace each group of training images by its average

• Compute the distance to the 𝑖𝑖𝑡𝑡𝑡 average 𝑐𝑐 − 𝑎𝑎𝑖𝑖 where 
𝑎𝑎𝑖𝑖 are the coefficients of the average face for person 𝑖𝑖
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