

Active Learning

Nicholas Ruozzi University of Texas at Dallas

Supervised Learning

- We're given lots and lots of labelled examples
 - Goal is to predict the label of unseen examples
 - Observations:
 - We don't necessarily need that many data points to construct a good classifier (think SVMs)
 - In certain applications, labels are *expensive*
 - They can cost time, money, or other resources

Image Segmentation

Someone had to produce these labels by hand!

Expensive Data

- In general, data is easy to come by but labels are expensive
 - Labelled speech
 - Labelled images and video
 - Large corpora of texts
- These tasks are mind numbing and boring
 - Can pay people to do them! (Amazon Mechanical Turk)
 - Can get expensive fast and we need some way to ensure that they are accurately solving the problem or else we are wasting money!

Semi-supervised Learning

- Given a collection of labeled and unlabeled data, use it to build a model to predict the labels of unseen data points
 - We never get to see the labels of the unlabeled data
 - However, if we assume something about the data generating process, the unlabeled data can still be useful...
 - Could find the model that maximizes the probability of both the labeled and unlabeled data (another application of EM!)

Active Learning

- Given lots of unlabeled examples
 - Learn to predict the label of unseen data points
 - The added feature: we have the ability to ask for the label of any one of the unlabeled inputs (e.g., a labeling oracle/expert)
 - Treat asking the oracle for a label as an expensive operation
 - The performance of the algorithm will be judged by how few queries it can make to learn a good classifier

Related to Experimental Design

- Suppose that we want to determine what disease a patient has
 - We can run a series of (possibly expensive) tests in order to determine the correct diagnosis
 - How should we choose the tests so as to minimize cost (dollars and life) while still guaranteeing that we come up with the correct diagnosis?

A First Attempt

- Could just randomly pick an unlabeled data point
 - Request its label
 - Add it to the training data
 - Retrain the model
 - Repeat
- If labels are expensive, can be a terrible idea
 - Many unlabeled data points may have very little impact on the predicted labels
 - This is effectively the supervised setting

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

- Binary classification via linear separators
- Suppose we are given a collection of unlabeled data points in one dimension
- Assuming that the data is separable (and noise free), how many queries to the labeling oracle do we need to find a separator?

Ideal case: number of hypotheses consistent with the labeling is approximately halved at each step

Types of Active Learning

- Pool based
 - We're given all of the unlabeled data upfront
- Streaming
 - Unlabeled examples come in one at a time and we have to decide whether or not we want to label them as they arrive
 - Also applies to situations in which storing the all data is not possible

Basic Strategy

- Iteratively build a model
- Use the current model to find "informative" unlabeled examples
- Select the most informative example(s)
 - Label them and add them to the training data
- Retrain the model using the new training data
- Repeat

Basic Strategy

- Iteratively build a model
- Use the current model to find "informative" unlabeled examples
- Select the most informative example(s)
 - Label them and add them to the training data
- Retrain the model using the new training data
- Repeat

Note: this procedure will result in a biased sampling of the underlying distribution in general (the actively labeled dataset is not reflective of the underlying data generating process)

Informative Examples

- For learning algorithms that model the data generating process...
 - A data point is informative if the current model is not confident in its prediction for this example
 - Least confident labeling (binary label case):

$$\underset{x \text{ unlabeled}}{\text{arg}} \max_{x \text{ unlabeled}} 1 - \max_{y} p(y|x, \theta)$$

- For learning algorithms, like SVMs, that are simply selecting among a collection of hypotheses...
 - Unlabeled data points that are far from the current decision boundary are unlikely to provide useful information

- Select a committee of T consistent classifiers using the labeled data
- Find examples for which the committee has the largest disagreement
 - For example, in a binary labeling problem, find the examples for which the committee's votes are split as close to 50/50 as possible between +1 and -1
- Request the label for these examples

Goal: reduce the version space as much as possible by selecting points whose label will eliminate the most hypotheses

- How to form a committee?
 - Need to pick consistent hypotheses (ideally, we'd consider all possible consistent hypotheses, but that may not be computationally feasible)
 - We could sample hypotheses from the version space with respect to the underlying distribution over hypotheses $p(\theta|labeled\ data)$
 - Difficult/expensive to compute this distribution in practice
 - Other ideas?

Query-by-Bagging

- At each step, generate T samples from the labeled data by resampling as in bagging
 - Train a perfect classifier on each sample
 - The committee is chosen to be these T classifiers
- Perform one iteration of the query-by-committee scheme using the above selected committee
- Can also do query-by-boosting! (same basic idea)
 - Run AdaBoost for T iterations to build a classifier
 - The AdaBoost classifier already contains the weighted vote of the committee

Experimental Comparison

Outliers

- A data point may have an uncertain/controversial label simply because it is an outlier
 - Such data points are unlikely to help the learner and could even hurt performance
 - Some methods to help correct for this (density weighting, etc.)

Other Query Selection Heuristics

- Many other heuristics to select informative data points
 - Select examples whose inclusion results in the most significant change in the model
 - Select examples that reduce the expected generalization error the most over unlabeled examples (labeled using the model)
 - Select examples that reduces the model variance the most

Mellow Learners

- Consider the streaming setting
- Let H_1 be the hypothesis class
- At step *t*,
 - Receive unlabeled point $x^{(t)}$
 - If there is any disagreement within H_t about x_t 's label, query label $y^{(t)}$ and set $H_{t+1} = \{h \in H_t : h(x^{(t)}) = y^{(t)}\}$ else $H_{t+1} = H_t$

Mellow Learners

- Consider the streaming setting
- Let H_1 be the hypothesis class
- At step *t*,
 - Receive unlabeled point $x^{(t)}$
 - If there is any disagreement within H_t about x_t 's label, query label $y^{(t)}$ and set $H_{t+1} = \{h \in H_t : h(x^{(t)}) = y^{(t)}\}$ else $H_{t+1} = H_t$

Can be intractable to compute and store H_t 's

Mellow Learners

- Consider the streaming setting
- Let H_1 be the hypothesis class
- At step t,
 - Receive unlabeled point $x^{(t)}$
 - If there is any disagreement within H_t about x_t 's label, query label $y^{(t)}$ and set $H_{t+1} = \{h \in H_t : h(x^{(t)}) = y^{(t)}\}$ else $H_{t+1} = H_t$

Results, roughly, in an exponential decrease in size of hypothesis space for data points with strong disagreement

Challenges

- Is it always possible to find queries that will effectively cut the size of the set of consistent hypotheses (a.k.a. the version space) in half?
 - If so, how can we find them?
 - Can we construct approaches that come with rigorous guarantees (e.g., the PAC learning for the active learning setting)?
 - How to handle noisy labels?

Supervised Learning

- Regression & classification
- Discriminative methods
 - k-NN
 - Decision trees
 - Perceptron
 - SVMs & kernel methods
 - Logistic regression
- Parameter learning
 - Maximum likelihood estimation
 - Expectation maximization
- Active learning

Bayesian Approaches

- MAP estimation
- Prior/posterior probabilities
- Bayesian networks
 - Naive Bayes
 - Hidden Markov models
 - Structure learning via Chow-Liu Trees

Unsupervised Learning

- Clustering
 - k-means
 - Hierarchical clustering
- Expectation maximization
 - Soft clustering
 - Mixtures of Gaussians

Learning Theory

- PAC learning
- VC dimension
- Bias/variance tradeoff
- Chernoff bounds
- Sample complexity

Optimization Methods

- Gradient descent
 - Stochastic gradient descent
 - Subgradient methods
- Coordinate descent
- Lagrange multipliers and duality

Matrix Based Methods

- Dimensionality Reduction
 - PCA
 - Matrix Factorizations
- Collaborative Filtering
 - Semisupervised learning

Ensemble Methods

- Bootstrap sampling
- Bagging
- Boosting

Other Learning Topics

- Active learning
- Reinforcement learning
- Neural networks
 - Perceptron and sigmoid neurons
 - Backpropagation

Questions about the course content?

(Reminder: I do not have office hours this week)

For the final...

- You should understand the basic concepts and theory of all of the algorithms and techniques that we have discussed in the course
- There is no need to memorize complicated formulas, etc.
 - For example, if I ask for the sample complexity of a scheme, I will give you the generic formula
- However, you should be able to derive the algorithms and updates
 - e.g., Lagrange multipliers and SVMs, the EM algorithm, etc.

For the final...

- No calculators, books, notes, etc. will be permitted
 - As before, if you need a calculator, you have done something terribly wrong
- The exam will be in roughly the same format
 - Expect true/false questions, short answers, and two-three long answer questions
- Exam will emphasize the new material, but ALL material will be tested
- Take a look at the practice exam!

Final Exam

Wednesday, 12/13/2017

11:00AM - 1:45PM

ECSS 2.306

Related Courses at UTD

- Natural Language Processing (CS 6320)
- Statistical Methods in Artificial Intelligence and Machine Learning (CS 6347)
- Artificial Intelligence (CS 6364)
- Information Retrieval (CS 6322)
- Intelligent Systems Analysis (ACN 6347)
- Intelligent Systems Design (ACN 6349)

ML Related People

- Vincent Ng (NLP)
- Vibhav Gogate (MLNs, Sampling, Graphical Models)
- Sanda Harabagiu (NLP & Health)
- Dan Moldovan (NLP)
- Sriraam Natarajan (MLNs, Graphical Models)
- Nicholas Ruozzi (Graphical Models & Approx. Inference)