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Supervised Learning

• We’re given lots and lots of labelled examples

• Goal is to predict the label of unseen examples

• Observations:

• We don’t necessarily need that many data points to 
construct a good classifier (think SVMs)

• In certain applications, labels are expensive

– They can cost time, money, or  other resources
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Image Segmentation

3

Someone had to produce these labels by hand!



Expensive Data

• In general, data is easy to come by but labels are expensive

• Labelled speech

• Labelled images and video

• Large corpora of texts

• These tasks are mind numbing and boring

• Can pay people to do them!  (Amazon Mechanical Turk)

• Can get expensive fast and we need some way to ensure 
that they are accurately solving the problem or else we are 
wasting money!
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Semi-supervised Learning

• Given a collection of labeled and unlabeled data, use it to 
build a model to predict the labels of unseen data points

• We never get to see the labels of the unlabeled data

• However, if we assume something about the data 
generating process, the unlabeled data can still be useful...

• Could find the model that maximizes the probability of 
both the labeled and unlabeled data (another 
application of EM!)
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Active Learning

• Given lots of unlabeled examples

• Learn to predict the label of unseen data points

• The added feature:  we have the ability to ask for the label 
of any one of the unlabeled inputs (e.g., a labeling 
oracle/expert)

• Treat asking the oracle for a label as an expensive 
operation

• The performance of the algorithm will be judged by 
how few queries it can make to learn a good classifier
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Related to Experimental Design

• Suppose that we want to determine what disease a patient 
has

• We can run a series of (possibly expensive) tests in order 
to determine the correct diagnosis

• How should we choose the tests so as to minimize cost 
(dollars and life) while still guaranteeing that we come up 
with the correct diagnosis?
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A First Attempt

• Could just randomly pick an unlabeled data point

• Request its label

• Add it to the training data

• Retrain the model

• Repeat

• If labels are expensive, can be a terrible idea 

• Many unlabeled data points may have very little impact on 
the predicted labels

• This is effectively the supervised setting
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A Motivating Example

• Binary classification via linear separators

• Suppose we are given a collection of unlabeled data points in 
one dimension

• Assuming that the data is separable (and noise free), how 
many queries to the labeling oracle do we need to find a 
separator?
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Ideal case:  number of hypotheses consistent 
with the labeling is approximately halved at 

each step



Types of Active Learning

• Pool based

• We’re given all of the unlabeled data upfront

• Streaming

• Unlabeled examples come in one at a time and we have to 
decide whether or not we want to label them as they 
arrive

• Also applies to situations in which storing the all data is not 
possible
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Basic Strategy

• Iteratively build a model

• Use the current model to find “informative” unlabeled 
examples

• Select the most informative example(s)

• Label them and add them to the training data

• Retrain the model using the new training data 

• Repeat
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Note:  this procedure will result in a biased sampling of the underlying 
distribution in general (the actively labeled dataset is not reflective of the 
underlying data generating process)



Informative Examples

• For learning algorithms that model the data generating 
process...

• A data point is informative if the current model is not 
confident in its prediction for this example

• Least confident labeling (binary label case):  

arg max
𝑥𝑥 unlabeled

1 − max
𝑦𝑦

𝑝𝑝 𝑦𝑦|𝑥𝑥,𝜃𝜃

• For learning algorithms, like SVMs, that are simply selecting 
among a collection of hypotheses...

• Unlabeled data points that are far from the current 
decision boundary are unlikely to provide useful 
information
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Query-by-Committee

• Select a committee of 𝑇𝑇 consistent classifiers using the 
labeled data

• Find examples for which the committee has the largest 
disagreement

• For example, in a binary labeling problem, find the 
examples for which the committee’s votes are split as close 
to 50/50 as possible between +1 and -1

• Request the label for these examples

Goal:  reduce the version space as much as possible by selecting 
points whose label will eliminate the most hypotheses
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Query-by-Committee
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Query-by-Committee
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Query-by-Committee

• How to form a committee?

• Need to pick consistent hypotheses (ideally, we’d consider 
all possible consistent hypotheses, but that may not be 
computationally feasible)

• We could sample hypotheses from the version space with 
respect to the underlying distribution over hypotheses 
𝑝𝑝(𝜃𝜃|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

• Difficult/expensive to compute this distribution in 
practice

• Other ideas?
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Query-by-Bagging

• At each step, generate 𝑇𝑇 samples from the labeled data by 
resampling as in bagging

• Train a perfect classifier on each sample

• The committee is chosen to be these 𝑇𝑇 classifiers

• Perform one iteration of the query-by-committee scheme 
using the above selected committee

• Can also do query-by-boosting! (same basic idea)

• Run AdaBoost for 𝑇𝑇 iterations to build a classifier

• The AdaBoost classifier already contains the weighted vote 
of the committee
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Experimental Comparison

30Abe & Mamitsuka, ICML ‘98



Outliers

• A data point may have an uncertain/controversial label simply 
because it is an outlier

• Such data points are unlikely to help the learner and could 
even hurt performance

• Some methods to help correct for this (density weighting, 
etc.)
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Other Query Selection Heuristics

• Many other heuristics to select informative data points

• Select examples whose inclusion results in the most 
significant change in the model

• Select examples that reduce the expected generalization 
error the most over unlabeled examples (labeled using the 
model)

• Select examples that reduces the model variance the most
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Mellow Learners

• Consider the streaming setting

• Let 𝐻𝐻1 be the hypothesis class

• At step 𝑡𝑡,

• Receive unlabeled point 𝑥𝑥(𝑡𝑡)

• If there is any disagreement within 𝐻𝐻𝑡𝑡 about 𝑥𝑥𝑡𝑡’s label, 
query label 𝑦𝑦(𝑡𝑡) and set 𝐻𝐻𝑡𝑡+1 = {ℎ ∈ 𝐻𝐻𝑡𝑡 ∶ ℎ(𝑥𝑥 𝑡𝑡 ) =
𝑦𝑦(𝑡𝑡)} else 𝐻𝐻𝑡𝑡+1 = 𝐻𝐻𝑡𝑡

33



Mellow Learners

• Consider the streaming setting

• Let 𝐻𝐻1 be the hypothesis class

• At step 𝑡𝑡,

• Receive unlabeled point 𝑥𝑥(𝑡𝑡)

• If there is any disagreement within 𝐻𝐻𝑡𝑡 about 𝑥𝑥𝑡𝑡’s label, 
query label 𝑦𝑦(𝑡𝑡) and set 𝐻𝐻𝑡𝑡+1 = {ℎ ∈ 𝐻𝐻𝑡𝑡 ∶ ℎ(𝑥𝑥 𝑡𝑡 ) =
𝑦𝑦(𝑡𝑡)} else 𝐻𝐻𝑡𝑡+1 = 𝐻𝐻𝑡𝑡

34

Can be intractable to compute and store 𝐻𝐻𝑡𝑡’s
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Results, roughly, in an exponential decrease in size of 
hypothesis space for data points with strong disagreement



Challenges

• Is it always possible to find queries that will effectively cut the 
size of the set of consistent hypotheses (a.k.a. the version 
space) in half?

• If so, how can we find them?

• Can we construct approaches that come with rigorous 
guarantees (e.g., the PAC learning for the active learning 
setting)?

• How to handle noisy labels?
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Supervised Learning

• Regression & classification

• Discriminative methods
• k-NN
• Decision trees
• Perceptron
• SVMs & kernel methods
• Logistic regression

• Parameter learning
• Maximum likelihood estimation
• Expectation maximization

• Active learning



Bayesian Approaches

• MAP estimation

• Prior/posterior probabilities

• Bayesian networks
• Naive Bayes
• Hidden Markov models
• Structure learning via Chow-Liu Trees



Unsupervised Learning

• Clustering

• 𝑘𝑘-means

• Hierarchical clustering

• Expectation maximization

• Soft clustering

• Mixtures of Gaussians



Learning Theory

• PAC learning

• VC dimension

• Bias/variance tradeoff

• Chernoff bounds

• Sample complexity



Optimization Methods

• Gradient descent
• Stochastic gradient descent
• Subgradient methods

• Coordinate descent

• Lagrange multipliers and duality



Matrix Based Methods

• Dimensionality Reduction
• PCA
• Matrix Factorizations

• Collaborative Filtering
• Semisupervised learning



Ensemble Methods

• Bootstrap sampling

• Bagging

• Boosting



Other Learning Topics

• Active learning

• Reinforcement learning

• Neural networks

• Perceptron and sigmoid neurons

• Backpropagation



Questions about the course 
content?

(Reminder:  I do not have office hours this 
week)



For the final...

• You should understand the basic concepts and theory of all of 
the algorithms and techniques that we have discussed in the 
course

• There is no need to memorize complicated formulas, etc.

• For example, if I ask for the sample complexity of a 
scheme, I will give you the generic formula

• However, you should be able to derive the algorithms and 
updates

• e.g., Lagrange multipliers and SVMs, the EM algorithm, etc.



For the final...

• No calculators, books, notes, etc. will be permitted

• As before, if you need a calculator, you have done 
something terribly wrong

• The exam will be in roughly the same format

• Expect true/false questions, short answers, and two-three 
long answer questions

• Exam will emphasize the new material, but ALL material will 
be tested

• Take a look at the practice exam!



Final Exam

Wednesday, 12/13/2017

11:00AM - 1:45PM

ECSS 2.306 



Related Courses at UTD

• Natural Language Processing (CS 6320)

• Statistical Methods in Artificial Intelligence and Machine 
Learning (CS 6347)

• Artificial Intelligence (CS 6364)

• Information Retrieval (CS 6322)

• Intelligent Systems Analysis (ACN 6347)

• Intelligent Systems Design (ACN 6349)



ML Related People

• Vincent Ng (NLP)

• Vibhav Gogate (MLNs, Sampling, Graphical Models)

• Sanda Harabagiu (NLP & Health)

• Dan Moldovan (NLP)

• Sriraam Natarajan (MLNs, Graphical Models)

• Nicholas Ruozzi (Graphical Models & Approx. Inference)
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