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Supervised Learning

• Input: 𝑥𝑥(1),𝑦𝑦(1) , … , (𝑥𝑥(𝑀𝑀),𝑦𝑦(𝑀𝑀))

• 𝑥𝑥(𝑚𝑚) is the 𝑚𝑚𝑡𝑡𝑡 data item and 𝑦𝑦(𝑚𝑚) is the 𝑚𝑚𝑡𝑡𝑡 label

• Goal: find a function 𝑓𝑓 such that 𝑓𝑓 𝑥𝑥(𝑚𝑚) is a “good 
approximation” to 𝑦𝑦(𝑚𝑚)

• Can use it to predict 𝑦𝑦 values for previously unseen 𝑥𝑥
values
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Supervised Learning

• Hypothesis space:  set of allowable functions 𝑓𝑓:𝑋𝑋 → 𝑌𝑌

• Goal:  find the “best” element of the hypothesis space

• How do we measure the quality of 𝑓𝑓?
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Examples of Supervised Learning

• Spam email detection

• Handwritten digit recognition

• Stock market prediction

• More?
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Regression

𝑥𝑥

𝑦𝑦

Hypothesis class:  linear functions 𝑓𝑓 𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏

How do we measure the quality of the approximation?
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Linear Regression

• In typical regression applications, measure the fit using a 
squared loss function

𝐿𝐿 𝑓𝑓 =
1
𝑀𝑀
�
𝑚𝑚

𝑓𝑓 𝑥𝑥 𝑚𝑚 − 𝑦𝑦 𝑚𝑚 2

• Want to minimize the average loss on the training data

• For 2-D linear regression, the learning problem is then

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• For an unseen data point, 𝑥𝑥, the learning algorithm predicts 
𝑓𝑓(𝑥𝑥)
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Supervised Learning

• Select a hypothesis space (elements of the space are 
represented by a collection of parameters)

• Choose a loss function (evaluates quality of the hypothesis as 
a function of its parameters)

• Minimize loss function using gradient descent (minimization 
over the parameters)

• Evaluate quality of the learned model using test data – that 
is, data on which the model was not trained
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Binary Classification

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2
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Binary Classification

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2

What is a good 
hypothesis space for 

this problem?
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In this case, we say 
that the 

observations are 
linearly separable
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Linear Separators

• In 𝑛𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

with 𝑤𝑤 ∈ ℝ𝑛𝑛, 𝑏𝑏 ∈ ℝ

• Hyperplanes divide ℝ𝑛𝑛 into two distinct sets of points (called 
open halfspaces)

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 > 0

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 < 0
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Binary Classification

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
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The Linearly Separable Case

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• Hypothesis space:  separating hyperplanes

𝑓𝑓 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 (𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

• How should we choose the loss function?
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The Linearly Separable Case

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• Hypothesis space:  separating hyperplanes

𝑓𝑓 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 (𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

• How should we choose the loss function?

• Count the number of misclassifications

𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = �
𝑚𝑚

𝑦𝑦(𝑚𝑚) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛(𝑤𝑤𝑇𝑇𝑥𝑥 𝑚𝑚 + 𝑏𝑏)

• Tough to optimize, gradient contains no information 
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The Linearly Separable Case

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• Hypothesis space:  separating hyperplanes

𝑓𝑓 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 (𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

• How should we choose the loss function?

• Penalize each misclassification by the size of the violation 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = �
𝑚𝑚

max 0,−𝑦𝑦 𝑚𝑚 (𝑤𝑤𝑇𝑇𝑥𝑥 𝑚𝑚 + 𝑏𝑏)

• Modified hinge loss (this loss is convex, but not 
differentiable)
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The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient 
descent
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Subgradients

• For a convex function 𝑠𝑠(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is any 
tangent line/plane through the point 𝑥𝑥0 that underestimates 
the function everywhere

𝑥𝑥

𝑠𝑠(𝑥𝑥)

𝑥𝑥0
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Subgradients

• For a convex function 𝑠𝑠(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is any 
tangent line/plane through the point 𝑥𝑥0 that underestimates 
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Subgradients

• For a convex function 𝑠𝑠(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is any 
tangent line/plane through the point 𝑥𝑥0 that underestimates 
the function everywhere

𝑥𝑥

𝑠𝑠(𝑥𝑥)

𝑥𝑥0

If 0 is a subgradient at 
𝑥𝑥0, then 𝑥𝑥0 is a global 

minimum
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The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient 
descent
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The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient 
descent

𝛻𝛻𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = − �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 𝑥𝑥 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

𝛻𝛻𝑏𝑏(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠) = − �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0
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The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient 
descent

𝛻𝛻𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = − �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 𝑥𝑥 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

𝛻𝛻𝑏𝑏(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠) = − �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0
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Is equal to 
zero if the 
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correctly 
classified 
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otherwise



The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient 
descent

𝑤𝑤(𝑡𝑡+1) = 𝑤𝑤(𝑡𝑡) + 𝛾𝛾𝑡𝑡 �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 𝑥𝑥 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

𝑏𝑏(𝑡𝑡+1) = 𝑏𝑏(𝑡𝑡) + 𝛾𝛾𝑡𝑡 �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

• With step size 𝛾𝛾𝑡𝑡 (also called the learning rate)
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Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent 
is used instead of standard gradient descent

• Approximate the gradient of a sum by sampling a few indices (as 
few as one) uniformly at random and averaging 

𝛻𝛻𝑥𝑥 �
𝑚𝑚=1

𝑀𝑀

𝑠𝑠𝑚𝑚(𝑥𝑥) ≈
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝛻𝛻𝑥𝑥𝑠𝑠𝑚𝑚𝑘𝑘(𝑥𝑥)

here, each 𝑚𝑚𝑘𝑘 is sampled uniformly at random from {1, … ,𝑀𝑀}

• Stochastic gradient descent converges under certain 
assumptions on the step size
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Stochastic Gradient Descent

• Setting 𝐾𝐾 = 1, we can simply pick a random observation 𝑚𝑚 and 
perform the following update if the 𝑚𝑚𝑡𝑡𝑡 data point is 
misclassified

𝑤𝑤(𝑡𝑡+1) = 𝑤𝑤(𝑡𝑡) + 𝛾𝛾𝑡𝑡𝑦𝑦(𝑚𝑚)𝑥𝑥(𝑚𝑚)

𝑏𝑏(𝑡𝑡+1) = 𝑏𝑏(𝑡𝑡) + 𝛾𝛾𝑡𝑡𝑦𝑦(𝑚𝑚)

and
𝑤𝑤(𝑡𝑡+1) = 𝑤𝑤(𝑡𝑡)

𝑏𝑏(𝑡𝑡+1) = 𝑏𝑏(𝑡𝑡)

otherwise

• Sometimes, you will see the perceptron algorithm specified with 
𝛾𝛾𝑡𝑡 = 1 for all 𝑝𝑝
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Applications of Perceptron

• Spam email classification

• Represent emails as vectors of counts of certain words 
(e.g., sir, madam, Nigerian, prince, money, etc.)

• Apply the perceptron algorithm to the resulting vectors

• To predict the label of an unseen email

• Construct its vector representation, 𝑥𝑥′

• Check whether or not 𝑤𝑤𝑇𝑇𝑥𝑥′ + 𝑏𝑏 is positive or negative
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Perceptron Learning Drawbacks

• No convergence guarantees if the observations are not 
linearly separable

• Can overfit

• There can be a number of perfect classifiers, but the 
perceptron algorithm doesn’t have any mechanism for 
choosing between them

+
+

+ +

+

+
+

+

+

++ +

_
_

_ _

_

_

_

_ _
_
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What If the Data Isn‘t Separable?

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2
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_
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What is a good 
hypothesis space for 

this problem?
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Adding Features

• Perceptron algorithm only works for linearly separable data

+

+
+

+

+

+

++
+

+

+

+
_

_

_ _
_ _

_

_ _

_

Can add features to make the data linearly separable over a 
larger space!

Essentially the same as higher order polynomials for linear 
regression!
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Adding Features

• The idea:

• Given the observations 𝑥𝑥(1), … , 𝑥𝑥(𝑀𝑀), construct a feature vectors 
𝜙𝜙 𝑥𝑥 1 , … ,𝜙𝜙(𝑥𝑥(𝑀𝑀))

• Use 𝜙𝜙 𝑥𝑥(1) , … ,𝜙𝜙 𝑥𝑥(𝑀𝑀) instead of 𝑥𝑥(1), … , 𝑥𝑥(𝑀𝑀) in the learning 
algorithm

• Goal is to choose 𝜙𝜙 so that 𝜙𝜙 𝑥𝑥(1) , … ,𝜙𝜙 𝑥𝑥(𝑀𝑀) are linearly separable

• Learn linear separators of the form 𝑤𝑤𝑇𝑇𝜙𝜙 𝑥𝑥 (instead of 𝑤𝑤𝑇𝑇𝑥𝑥)

• Warning: more expressive features can lead to overfitting!
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Adding Features:  Examples

• 𝜙𝜙 𝑥𝑥1, 𝑥𝑥2 =
𝑥𝑥1
𝑥𝑥2

• This is just the input data, without modification

• 𝜙𝜙 𝑥𝑥1, 𝑥𝑥2 =

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥12

𝑥𝑥22

• This corresponds to a second degree polynomial 
separator, or equivalently, elliptical separators in the 
original space
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Adding Features

𝑥𝑥1

𝑥𝑥2

𝑥𝑥1 − 1 2 + 𝑥𝑥2 − 1 2 − 1 ≤ 0
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Adding Features

𝑥𝑥1

𝑥𝑥2

1𝑥𝑥12 + 1𝑥𝑥22 − 2𝑥𝑥1 − 2𝑥𝑥2 − 2 ≤ 0
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Support Vector Machines

+
+

+ +

+

+
+

+

+

++ +

_
_

_
_

_

_

_

_ _
_

• How can we decide between two perfect classifiers?

• What is the practical difference between these two solutions?
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