

Lagrange Multipliers & the Kernel Trick

Nicholas Ruozzi University of Texas at Dallas

The Strategy So Far...

- Choose hypothesis space
- Construct loss function (ideally convex)
- Minimize loss to "learn" correct parameters

General Optimization

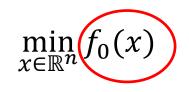
A mathematical detour, we'll come back to SVMs soon!

$$\min_{x\in\mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \le 0,$$
 $i = 1, ..., m$
 $h_i(x) = 0,$ $i = 1, ..., p$

General Optimization



 f_0 is not necessarily convex

subject to:

$$f_i(x) \le 0,$$
 $i = 1, ..., m$
 $h_i(x) = 0,$ $i = 1, ..., p$

General Optimization

 $\min_{x\in\mathbb{R}^n}f_0(x)$

subject to:

Constraints do not need to be linear

$$f_i(x) \le 0,$$
 $i = 1, ..., n$
 $h_i(x) = 0,$ $i = 1, ..., n$

Lagrangian

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- Incorporate constraints into a new objective function
- $\lambda \ge 0$ and ν are vectors of Lagrange multipliers
- The Lagrange multipliers can be thought of as enforcing soft constraints

Duality

 Construct a dual function by minimizing the Lagrangian over the primal variables

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu)$$

• $g(\lambda, \nu) = -\infty$ whenever the Lagrangian is not bounded from below for a fixed λ and ν

The Primal Problem

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \le 0,$$
 $i = 1, ..., m$
 $h_i(x) = 0,$ $i = 1, ..., p$

Equivalently,

$$\inf_{x} \sup_{\lambda \geq 0, \nu} L(x, \lambda, \nu)$$

The Dual Problem

$$\sup_{\lambda \geq 0, \nu} g(\lambda, \nu)$$
 Equivalently,
$$\sup_{\lambda \geq 0, \nu} \inf_{x} L(x, \lambda, \nu)$$

 The dual problem is always concave, even if the primal problem is not convex

Primal vs. Dual

$$\sup_{\lambda \ge 0, \nu} \inf_{x} L(x, \lambda, \nu) \le \inf_{x} \sup_{\lambda \ge 0, \nu} L(x, \lambda, \nu)$$

- Why?
 - $g(\lambda, \nu) \le L(x, \lambda, \nu)$ for all x
 - $L(x', \lambda, \nu) \le f_0(x')$ for any feasible $x', \lambda \ge 0$
 - x is feasible if it satisfies all of the constraints
 - Let x^* be the optimal solution to the primal problem and $\lambda \geq 0$

$$g(\lambda, \nu) \le L(x^*, \lambda, \nu) \le f_0(x^*)$$

Simple Examples

• Minimize $x^2 + y^2$ subject to $x + y \ge 1$

• Minimize $x \log x + y \log y + z \log z$ subject to x + y + z = 1 and $x, y, z \ge 0$

Duality

 Under certain conditions, the two optimization problems are equivalent

$$\sup_{\lambda \ge 0, \nu} \inf_{x} L(x, \lambda, \nu) = \inf_{x} \sup_{\lambda \ge 0, \nu} L(x, \lambda, \nu)$$

- This is called strong duality
- If the inequality is strict, then we say that there is a duality gap
 - Size of gap measured by the difference between the two sides of the inequality

Slater's Condition

For any optimization problem of the form

$$\min_{x \in \mathbb{R}^n} f_0(x)$$

subject to:

$$f_i(x) \le 0, \qquad i = 1, ..., m$$

 $Ax = b$

where f_0, \dots, f_m are convex functions, strong duality holds if there exists an x such that

$$f_i(x) < 0, \qquad i = 1, \dots, m$$

 $Ax = b$

$$\min_{w} \frac{1}{2} ||w||^2$$

such that

$$y_i(w^T x^{(i)} + b) \ge 1$$
, for all i

 Note that Slater's condition holds as long as the data is linearly separable

$$L(w, b, \lambda) = \frac{1}{2}w^{T}w + \sum_{i} \lambda_{i}(1 - y_{i}(w^{T}x^{(i)} + b))$$

Convex in w, so take derivatives to form the dual

$$\frac{\partial L}{\partial w_k} = w_k + \sum_i -\lambda_i y_i x_k^{(i)} = 0$$
$$\frac{\partial L}{\partial b} = \sum_i -\lambda_i y_i = 0$$

$$L(w, b, \lambda) = \frac{1}{2}w^{T}w + \sum_{i} \lambda_{i}(1 - y_{i}(w^{T}x^{(i)} + b))$$

Convex in w, so take derivatives to form the dual

$$w = \sum_{i} \lambda_i y_i x^{(i)}$$

$$\sum_{i} \lambda_i y_i = 0$$

$$\max_{\lambda \geq 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j x^{(i)^T} x^{(j)} + \sum_{i} \lambda_i$$

such that

$$\sum_{i} \lambda_{i} y_{i} = 0$$

- By strong duality, solving this problem is equivalent to solving the primal problem
 - Given the optimal λ , we can easily construct w (b can be found by complementary slackness)

Complementary Slackness

- Suppose that there is zero duality gap
- Let x^* be an optimum of the primal and (λ^*, ν^*) be an optimum of the dual

$$f_{0}(x^{*}) = g(\lambda^{*}, v^{*})$$

$$= \inf_{x} \left[f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{p} v_{i}^{*} h_{i}(x) \right]$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{p} v_{i}^{*} h_{i}(x^{*})$$

$$= f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*})$$

$$\leq f_{0}(x^{*})$$

Complementary Slackness

This means that

$$\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = 0$$

- As $\lambda \geq 0$ and $f_i(x_i^*) \leq 0$, this can only happen if $\lambda_i^* f_i(x^*) = 0$ for all i
- Put another way,
 - If $f_i(x^*) < 0$ (i.e., the constraint is not tight), then $\lambda_i^* = 0$
 - If $\lambda_i^* > 0$, then $f_i(x^*) = 0$
 - ONLY applies when there is no duality gap

$$\max_{\lambda \geq 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j x^{(i)^T} x^{(j)} + \sum_{i} \lambda_i$$

such that

$$\sum_{i} \lambda_i y_i = 0$$

• By complementary slackness, $\lambda_i^* > 0$ means that $x^{(i)}$ is a support vector (can then solve for b using w)

$$\max_{\lambda \geq 0} -\frac{1}{2} \sum_{i} \sum_{j} \lambda_i \lambda_j y_i y_j x^{(i)^T} x^{(j)} + \sum_{i} \lambda_i$$

such that

$$\sum_{i} \lambda_{i} y_{i} = 0$$

- Takes $O(n^2)$ time just to evaluate the objective function
 - Active area of research to try to speed this up