SVMs with Slack

Nicholas Ruozzi

University of Texas at Dallas

Dual SVM

$$
\max _{\lambda \geq 0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} x^{(i)^{T}} x^{(j)}+\sum_{i} \lambda_{i}
$$

such that

$$
\sum_{i} \lambda_{i} y_{i}=0
$$

- The dual formulation only depends on inner products between the data points
- Same thing is true if we use feature vectors instead

Dual SVM

$$
\max _{\lambda \geq 0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi\left(x^{(i)}\right)^{T} \Phi\left(x^{(j)}\right)+\sum_{i} \lambda_{i}
$$

such that

$$
\sum_{i} \lambda_{i} y_{i}=0
$$

- The dual formulation only depends on inner products between the data points
- Same thing is true if we use feature vectors instead

The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large
- This is best illustrated by example
- Let $\phi\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}x_{1} x_{2} \\ x_{2} x_{1} \\ x_{1}^{2} \\ x_{2}^{2}\end{array}\right]$
- $\phi\left(x_{1}, x_{2}\right)^{T} \phi\left(z_{1}, z_{2}\right)=x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2}$

$$
\begin{aligned}
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =\left(x^{T} z\right)^{2}
\end{aligned}
$$

The Kernel Trick

- For some feature vectors, we can compute the inner products quickly, even if the feature vectors are very large
- This is best illustrated by example
- Let $\phi\left(x_{1}, x_{2}\right)=\left[\begin{array}{c}x_{1} x_{2} \\ x_{2} x_{1} \\ x_{1}^{2} \\ x_{2}^{2}\end{array}\right]$
- $\phi\left(x_{1}, x_{2}\right)^{T} \phi\left(z_{1}, z_{2}\right)=x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2}$

Reduces to a dot product in the original space

The Kernel Trick

- The same idea can be applied for the feature vector ϕ of all polynomials of degree (exactly) d
- $\phi(x)^{T} \phi(z)=\left(x^{T} z\right)^{d}$
- More generally, a kernel is a function $k(x, z)=\phi(x)^{T} \phi(z)$ for some feature $\operatorname{map} \phi$
- Rewrite the dual objective

$$
\max _{\lambda \geq 0, \sum_{i} \lambda_{i} y_{i}=0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} k\left(x^{(i)}, x^{(j)}\right)+\sum_{i} \lambda_{i}
$$

Examples of Kernels

- Polynomial kernel of degree exactly d
- $k(x, z)=\left(x^{T} z\right)^{d}$
- General polynomial kernel of degree d for some c
- $k(x, z)=\left(x^{T} z+c\right)^{d}$
- Gaussian kernel for some σ
- $k(x, z)=\exp \left(\frac{-\|x-z\|^{2}}{2 \sigma^{2}}\right)$
- The corresponding ϕ is infinite dimensional!
- So many more...

Gaussian Kernels

- Consider the Gaussian kernel

$$
\begin{aligned}
\exp \left(\frac{-\|x-z\|^{2}}{2 \sigma^{2}}\right) & =\exp \left(\frac{-(x-z)^{T}(x-z)}{2 \sigma^{2}}\right) \\
& =\exp \left(\frac{-\|x\|^{2}+2 x^{T} z-\|z\|^{2}}{2 \sigma^{2}}\right) \\
& =\exp \left(-\frac{\|x\|^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{\|z\|^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{x^{T} z}{\sigma^{2}}\right)
\end{aligned}
$$

- Use the Taylor expansion for $\exp ()$

$$
\exp \left(\frac{x^{T} z}{\sigma^{2}}\right)=\sum_{n=0}^{\infty} \frac{\left(x^{T} z\right)^{n}}{\sigma^{2 n} n!}
$$

Gaussian Kernels

- Consider the Gaussian kernel

$$
\begin{aligned}
\exp \left(\frac{-\|x-z\|^{2}}{2 \sigma^{2}}\right) & =\exp \left(\frac{-(x-z)^{T}(x-z)}{2 \sigma^{2}}\right) \\
& =\exp \left(\frac{-\|x\|^{2}+2 x^{T} z-\|z\|^{2}}{2 \sigma^{2}}\right) \\
& =\exp \left(-\frac{\|x\|^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{\|z\|^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{x^{T} z}{\sigma^{2}}\right)
\end{aligned}
$$

- Use the Taylor expansion for $\exp ()$

$$
\exp \left(\frac{x^{T} z}{\sigma^{2}}\right)=\sum_{n=0}^{\infty} \frac{\left(x^{T} z\right)^{n}}{\sigma^{2 n} n!} \quad \begin{aligned}
& \text { Polynomial kernels of } \\
& \text { every degree! }
\end{aligned}
$$

Kernels

- Bigger feature space increases the possibility of overfitting
- Large margin solutions may still generalize reasonably well
- Alternative: add "penalties" to the objective to disincentivize complicated solutions

$$
\min _{w} \frac{1}{2}\|w\|^{2}+c \cdot(\# \text { of misclassifications })
$$

- Not a quadratic program anymore (in fact, it's NP-hard)
- Similar problem to Hamming loss, no notion of how badly the data is misclassified

SVMs with Slack

- Allow misclassification
- Penalize misclassification linearly (just like in the perceptron algorithm)
- Again, easier to work with than the Hamming loss
- Objective stays convex
- Will let us handle data that isn't linearly separable!

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

Potentially allows some points to be
misclassified/inside the margin

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

Constant c determines degree to which slack is
such that penalized

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

- How does this objective change with c ?

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

- How does this objective change with c ?
- As $c \rightarrow \infty$, requires a perfect classifier
- As $c \rightarrow 0$, allows arbitrary classifiers (i.e., ignores the data)

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

- How should we pick c ?

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

- How should we pick c ?
- Divide the data into three pieces training, testing, and validation
- Use the validation set to tune the value of the hyperparameter c

Validation Set

- General learning strategy
- Build a classifier using the training data
- Select hyperparameters using validation data
- Evaluate the chosen model with the selected hyperparameters on the test data

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

- What is the optimal value of ξ for fixed w and b ?

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

- What is the optimal value of ξ for fixed w and b ?
- If $y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1$, then $\xi_{i}=0$
- If $y_{i}\left(w^{T} x^{(i)}+b\right)<1$, then $\xi_{i}=1-y_{i}\left(w^{T} x^{(i)}+b\right)$

SVMs with Slack

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

- We can formulate this slightly differently
- $\xi_{i}=\max \left\{0,1-y_{i}\left(w^{T} x^{(i)}+b\right)\right\}$
- Does this look familiar?
- Hinge loss provides an upper bound on Hamming loss

Hinge Loss Formulation

- Obtain a new objective by substituting in for ξ

$$
\min _{w, b} \frac{1}{2}\|w\|^{2}+c \sum_{i} \max \left\{0,1-y_{i}\left(w^{T} x^{(i)}+b\right)\right\}
$$

Can minimize with gradient descent!

Hinge Loss Formulation

- Obtain a new objective by substituting in for ξ

$$
\min _{w, b} \frac{1}{2}\|w\|^{2}+c \sum_{i} \max \left\{0,1-y_{i}\left(w^{T} x^{(i)}+b\right)\right\}
$$

Penalty to prevent overfitting

Hinge loss

Hinge Loss Formulation

- Obtain a new objective by substituting in for ξ

Regularizer
Hinge loss
λ controls the amount of regularization

How should we pick λ ?

Imbalanced Data

- If the data is imbalanced (i.e., more positive examples than negative examples), may want to evenly distribute the error between the two classes

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+\frac{c}{N_{+}} \sum_{i: y_{i}=1} \xi_{i}+\frac{c}{N_{-}} \sum_{i: y_{i}=-1} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

Dual of Slack Formulation

$$
\min _{w, b, \xi} \frac{1}{2}\|w\|^{2}+c \sum_{i} \xi_{i}
$$

such that

$$
\begin{gathered}
y_{i}\left(w^{T} x^{(i)}+b\right) \geq 1-\xi_{i}, \text { for all } i \\
\xi_{i} \geq 0, \text { for all } i
\end{gathered}
$$

Dual of Slack Formulation

$L(w, b, \xi, \lambda, \mu)=\frac{1}{2} w^{T} w+c \sum_{i} \xi_{i}+\sum_{i} \lambda_{i}\left(1-\xi_{i}-y_{i}\left(w^{T} x^{(i)}+b\right)\right)+\sum_{i}-\mu_{i} \xi_{i}$
Convex in w, b, ξ, so take derivatives to form the dual

$$
\begin{gathered}
\frac{\partial L}{\partial w_{k}}=w_{k}+\sum_{i}-\lambda_{i} y_{i} x_{k}^{(i)}=0 \\
\frac{\partial L}{\partial b}=\sum_{i}-\lambda_{i} y_{i}=0 \\
\frac{\partial L}{\partial \xi_{k}}=c-\lambda_{k}-\mu_{k}=0
\end{gathered}
$$

Dual of Slack Formulation

$$
\max _{\lambda \geq 0}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} x^{(i)^{T}} x^{(j)}+\sum_{i} \lambda_{i}
$$

such that

$$
\begin{gathered}
\sum_{i} \lambda_{i} y_{i}=0 \\
c \geq \lambda_{i} \geq 0, \text { for all } i
\end{gathered}
$$

Summary

- Gather Data + Labels
- Select features vectors
- Randomly split into three groups
- Training set
- Validation set
- Test set
- Experimentation cycle
- Select a "good" hypothesis from the hypothesis space
- Tune hyperparameters using validation set
- Compute accuracy on test set (fraction of correctly classified instances)

Generalization

- We argued, intuitively, that SVMs generalize better than the perceptron algorithm
- How can we make this precise?
- Coming soon... but first...

Roadmap

- Where are we headed?
- Other types of hypothesis spaces for supervised learning
- k nearest neighbor
- Decision trees
- Learning theory
- Generalization and PAC bounds
- VC dimension
- Bias/variance tradeoff

