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Learning Theory

• So far, we’ve been focused only on algorithms for finding the 
best hypothesis in the hypothesis space

• How do we know that the learned hypothesis will perform 
well on the test set?

• How many samples do we need to make sure that we learn 
a good hypothesis?

• In what situations is learning possible?
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Learning Theory

• If the training data is linearly separable, we saw that 
perceptron/SVMs will always perfectly classify the training 
data

• This does not mean that it will perfectly classify the test 
data

• Intuitively, if the true distribution of samples is linearly 
separable, then seeing more data should help us do better
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Problem Complexity

• Complexity of a learning problem depends on

• Size/expressiveness of the hypothesis space

• Accuracy to which a target concept must be approximated

• Probability with which the learner must produce a 
successful hypothesis

• Manner in which training examples are presented, e.g. 
randomly or by query to an oracle
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Problem Complexity

• Measures of complexity

• Sample complexity

• How much data you need in order to (with high 
probability) learn a good hypothesis

• Computational complexity 

• Amount of time and space required to accurately solve 
(with high probability) the learning problem

• Higher sample complexity means higher computational 
complexity
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PAC Learning

• Probably approximately correct (PAC)

• Developed by Leslie Valiant

• The only reasonable expectation of a learner is that with 
high probability it learns a close approximation to the 
target concept

• Specify two small parameters, 𝜖𝜖 and 𝛿𝛿, and require that 
with probability at least (1 − 𝛿𝛿) a system learn a concept 
with error at most 𝜖𝜖
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Consistent Learners

• Imagine a simple setting

• The hypothesis space is finite (i.e., 𝐻𝐻 = 𝑐𝑐)

• The true distribution of the data is 𝑝𝑝(�⃗�𝑥), no noisy labels

• We learned a perfect classifier on the training set, let’s call 
it ℎ ∈ H

• A learner is said to be consistent if it always outputs a 
perfect classifier (assuming that one exists)

• Want to compute the (expected) error of the classifier
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Notions of Error

• Training error of ℎ ∈ 𝐻𝐻
• The error on the training data

• Number of samples incorrectly classified divided by the 
total number of samples

• True error of ℎ ∈ 𝐻𝐻

• The error over all possible future random samples

• Probability that ℎ misclassifies a random data point

𝑝𝑝 ℎ 𝑥𝑥 ≠ 𝑦𝑦
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Learning Theory

• Let 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) be 𝑀𝑀 labelled data points 
sampled independently according to 𝑝𝑝

• Let 𝐶𝐶𝑚𝑚ℎ be a random variable that indicates whether or not the 
𝑚𝑚𝑡𝑡ℎ data point is correctly classified

• The probability that ℎ misclassifies the 𝑚𝑚𝑡𝑡ℎ data point is

𝑝𝑝 𝐶𝐶𝑚𝑚ℎ = 0 = �
(𝑥𝑥,𝑦𝑦)

𝑝𝑝 𝑥𝑥,𝑦𝑦 1ℎ 𝑥𝑥 ≠𝑦𝑦 = 𝜖𝜖ℎ
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Learning Theory

• Probability that all data points classified correctly?

𝑝𝑝 𝐶𝐶1ℎ = 1, … ,𝐶𝐶𝑚𝑚ℎ = 1 = �
𝑖𝑖=1

𝑚𝑚

𝑝𝑝(𝐶𝐶𝑖𝑖ℎ = 1) = 1 − 𝜖𝜖ℎ 𝑚𝑚

• Probability that a hypothesis ℎ ∈ H whose true error is at 
least 𝜖𝜖 correctly classifies the 𝑚𝑚 data points is then

𝑝𝑝 𝐶𝐶1ℎ = 1, … ,𝐶𝐶𝑚𝑚ℎ = 1 ≤ 1 − 𝜖𝜖 𝑚𝑚 ≤ 𝑒𝑒−𝜖𝜖𝑚𝑚

for 𝜖𝜖 ≤ 1
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Learning Theory

• The version space (set of consistent hypotheses) is said to be 
𝜖𝜖-exhausted if and only if every consistent hypothesis has true 
error less than 𝜖𝜖

• Want enough samples to guarantee that every consistent 
hypothesis has error at most 𝜖𝜖

• We’ll show that, given enough samples, w.h.p. every 
hypothesis with true error at least 𝜖𝜖 is not consistent with the 
data
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The Union Bound

• Let 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 ⊆ 𝐻𝐻 be the set of all hypotheses that have true 
error at least 𝜖𝜖

• From before for each ℎ ∈ 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵, 

𝑝𝑝 ℎ correctly classifies all 𝑀𝑀 data points ≤ 𝑒𝑒−𝜖𝜖𝑀𝑀

• So, the probability that some ℎ ∈ 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 correctly classifies all 
of the data points is

𝑝𝑝 �
ℎ∈𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵

𝐶𝐶1ℎ = 1, … ,𝐶𝐶𝑀𝑀ℎ = 1 ≤ �
ℎ∈𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵

𝑝𝑝 𝐶𝐶1ℎ = 1, … ,𝐶𝐶𝑀𝑀ℎ = 1

≤ 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 𝑒𝑒−𝜖𝜖𝑀𝑀
≤ 𝐻𝐻 𝑒𝑒−𝜖𝜖𝑀𝑀
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Haussler, 1988

• What we just proved:

• Theorem: For a finite hypothesis space, 𝐻𝐻, with 𝑀𝑀 i.i.d. 
samples, and 0 < 𝜖𝜖 < 1, the probability that the version 
space is not 𝜖𝜖-exhausted is at most 𝐻𝐻 𝑒𝑒−𝜖𝜖𝑀𝑀

• We can turn this into a sample complexity bound
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Sample Complexity

• Let 𝛿𝛿 be an upper bound on the desired probability of not 𝜖𝜖-
exhausting the sample space

• That is, the probability that the version space is not 𝜖𝜖-
exhausted is at most 𝐻𝐻 𝑒𝑒−𝜖𝜖𝑀𝑀 ≤ 𝛿𝛿

• Solving for 𝑀𝑀 yields

𝑀𝑀 ≥ −
1
𝜖𝜖

ln
𝛿𝛿
𝐻𝐻

= ln |𝐻𝐻| + ln
1
𝛿𝛿

/𝜖𝜖
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• Let 𝛿𝛿 be an upper bound on the desired probability of not 𝜖𝜖-
exhausting the sample space

• That is, the probability that the version space is not 𝜖𝜖-
exhausted is at most 𝐻𝐻 𝑒𝑒−𝜖𝜖𝑀𝑀 ≤ 𝛿𝛿

• Solving for 𝑀𝑀 yields

𝑀𝑀 ≥ −
1
𝜖𝜖

ln
𝛿𝛿
𝐻𝐻

= ln |𝐻𝐻| + ln
1
𝛿𝛿

/𝜖𝜖
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Decision Trees

• Suppose that we want to learn an arbitrary Boolean function 
given 𝑛𝑛 Boolean features

• Hypothesis space consists of all decision trees

• Size of this space = ?

• How many samples are sufficient?
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Decision Trees

• Suppose that we want to learn an arbitrary Boolean function 
given 𝑛𝑛 Boolean features

• Hypothesis space consists of all decision trees

• Size of this space = 22𝑛𝑛 = number of Boolean functions on 
𝑛𝑛 inputs

• How many samples are sufficient?

𝑀𝑀 ≥ ln 22𝑛𝑛 + ln
1
𝛿𝛿

/𝜖𝜖
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Generalizations

• How do we handle the case that there is no perfect classifier?

• Pick the hypothesis with the lowest error on the training 
set

• What do we do if the hypothesis space isn’t finite?

• Infinite sample complexity?

• Next time…
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Chernoff Bounds

• Chernoff bound:  Suppose 𝑌𝑌1, … ,𝑌𝑌𝑀𝑀 are i.i.d. random variables 
taking values in {0, 1} such that 𝐸𝐸𝑝𝑝 𝑌𝑌𝑖𝑖 = 𝑦𝑦.  For 𝜖𝜖 > 0,

𝑝𝑝 𝑦𝑦 −
1
𝑀𝑀
�
𝑚𝑚

𝑌𝑌𝑚𝑚 ≥ 𝜖𝜖 ≤ 2𝑒𝑒−2𝑀𝑀𝜖𝜖2
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1
𝑀𝑀
�
𝑚𝑚
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PAC Bounds

• Theorem: For a finite hypothesis space H finite, 𝑀𝑀 i.i.d. 
samples, and 0 < 𝜖𝜖 < 1, the probability that true error of any 
of the best classifiers (i.e., lowest training error) is larger than 
its training error plus 𝜖𝜖 is at most |𝐻𝐻|𝑒𝑒−2𝑀𝑀𝜖𝜖2

• Sample complexity (for desired 𝛿𝛿 ≥ 2|𝐻𝐻|𝑒𝑒−2𝑀𝑀𝜖𝜖2)

𝑀𝑀 ≥ ln 𝐻𝐻 + ln
1
𝛿𝛿

/2𝜖𝜖2
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿𝛿, 
then with probability (1 − 𝛿𝛿), for all ℎ ∈ 𝐻𝐻

𝜖𝜖ℎ ≤ 𝜖𝜖ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 +
1

2𝑀𝑀
ln |𝐻𝐻| + ln

1
𝛿𝛿

• For small |𝐻𝐻|
• High bias (may not be enough hypotheses to choose 

from)
• Low variance
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿𝛿, 
then with probability (1 − 𝛿𝛿), for all ℎ ∈ 𝐻𝐻

𝜖𝜖ℎ ≤ 𝜖𝜖ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 +
1

2𝑀𝑀
ln |𝐻𝐻| + ln

1
𝛿𝛿

• For large |𝐻𝐻|
• Low bias (lots of good hypotheses)
• High variance
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