Variance Reduction and Ensemble Methods

Nicholas Ruozzi
University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag
Last Time

• PAC learning

• Bias/variance tradeoff
 • small hypothesis spaces (not enough flexibility) can have high bias
 • rich hypothesis spaces (too much flexibility) can have high variance

• Today: more on this phenomenon and how to get around it
Intuition

• Bias
 • Measures the accuracy or quality of the algorithm
 • High bias means a poor match

• Variance
 • Measures the precision or specificity of the match
 • High variance means a weak match

• We would like to minimize each of these

• Unfortunately, we can’t do this independently, there is a trade-off
Bias-Variance Analysis in Regression

• True function is $y = f(x) + \epsilon$

 • Where noise, ϵ, is normally distributed with zero mean and standard deviation σ

• Given a set of training examples, $(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})$, we fit a hypothesis $g(x) = w^T x + b$ to the data to minimize the squared error

$$\sum_{i} [y^{(i)} - g(x^{(i)})]^2$$
2-D Example

Sample 20 points from $f(x) = x + 2 \sin(1.5x) + N(0,0.2)$
2-D Example

50 fits (20 examples each)
Bias-Variance Analysis

• Given a new data point x' with observed value $y' = f(x') + \epsilon$, want to understand the expected prediction error.

• Suppose that training samples are drawn independently from a distribution $p(S)$, want to compute the expected error of the estimator

$$E[(y' - g_S(x'))^2]$$
Probability Reminder

- Variance of a random variable, Z

\[
Var(Z) = E[(Z - E[Z])^2] \\
= E[Z^2] - E[Z]^2
\]

- Properties of $Var(Z)$

\[
Var(aZ) = E[a^2Z^2] - E[aZ]^2 = a^2Var(Z)
\]
Bias-Variance-Noise Decomposition

\[
E \left[(y' - g_S(x'))^2 \right] = E[g_S(x')^2 - 2g_S(x')y' + y'^2]
\]

\[
= E[g_S(x')^2] - 2E[g_S(x')]E[y'] + E[y'^2]
\]

\[
= \text{Var}(g_S(x')) + E[g_S(x')^2] - 2E[g_S(x')]f(x')
\]

\[
+ \text{Var}(y') + f(x')^2
\]

\[
= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \text{Var}(\epsilon)
\]

\[
= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2
\]
Bias-Variance-Noise Decomposition

\[
E \left[(y' - g_S(x'))^2 \right] = E[g_S(x')^2 - 2g_S(x')y' + y'^2] \\
= E[g_S(x')^2] - 2E[g_S(x')E[y']] + E[y'^2] \\
= \text{Var}(g_S(x')) + E[g_S(x')^2] - 2E[g_S(x')f(x')] \\
+ \text{Var}(y') + f(x')^2 \\
= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \text{Var}(\varepsilon) \\
= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2
\]

The samples \(S \) and the noise \(\varepsilon \) are independent
Bias-Variance-Noise Decomposition

\[
E \left[(y' - g_S(x'))^2 \right] = E \left[g_S(x')^2 - 2g_S(x')y' + y'^2 \right]
\]

\[
= E \left[g_S(x')^2 \right] - 2E \left[g_S(x') \right] E \left[y' \right] + E \left[y'^2 \right]
\]

\[
= \text{Var}(g_S(x')) + E \left[g_S(x') \right]^2 - 2E \left[g_S(x') \right] f(x')
\]

\[
+ \text{Var}(y') + f(x')^2
\]

\[
= \text{Var}(g_S(x')) + (E \left[g_S(x') \right] - f(x'))^2 + \text{Var}(\epsilon)
\]

\[
= \text{Var}(g_S(x')) + (E \left[g_S(x') \right] - f(x'))^2 + \sigma^2
\]

Follows from definition of variance
Bias-Variance-Noise Decomposition

\[E \left[(y' - g_S(x'))^2 \right] = E[g_S(x')^2 - 2g_S(x')y' + y'^2] \]

\[= E[g_S(x')^2] - 2E[g_S(x')]E[y'] + E[y'^2] \quad \text{\(E[y'] = f(x')\)} \]

\[= \text{Var}(g_S(x')) + E[g_S(x')]^2 - 2E[g_S(x')]f(x') \]

\[+ \text{Var}(y') + f(x')^2 \]

\[= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \text{Var}(\epsilon) \]

\[= \text{Var}(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2 \]
Bias-Variance-Noise Decomposition

\[
E \left[(y' - g_S(x'))^2 \right] = E[g_S(x')^2 - 2g_S(x')y' + y'^2] \\
= E[g_S(x')^2] - 2E[g_S(x')]E[y'] + E[y'^2] \\
= Var(g_S(x')) + E[g_S(x')]^2 - 2E[g_S(x')]f(x') \\
\quad + Var(y') + f(x')^2 \\
= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + Var(\epsilon) \\
= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2
\]

Variance Bias Noise
Bias, Variance, and Noise

- **Variance:** $E\left[(g_S(x') - E[g_S(x')])^2 \right]
 - Describes how much $g_S(x')$ varies from one training set S to another

- **Bias:** $E[g_S(x')] - f(x')$
 - Describes the average error of $g_S(x')$

- **Noise:** $E\left[(y' - f(x'))^2 \right] = E[\epsilon^2] = \sigma^2$
 - Describes how much y' varies from $f(x')$
2-D Example

50 fits (20 examples each)
Bias
Variance
Noise
Bias

• Low bias
 • ?

• High bias
 • ?
Bias

• Low bias
 • Linear regression applied to linear data
 • 2nd degree polynomial applied to quadratic data

• High bias
 • Constant function applied to non-constant data
 • Linear regression applied to highly non-linear data
Variance

• Low variance
 • ?

• High variance
 • ?
Variance

• Low variance
 • Constant function
 • Model independent of training data

• High variance
 • High degree polynomial
Bias/Variance Tradeoff

• (bias²+variance) is what counts for prediction

• As we saw in PAC learning, we often have
 • Low bias ⇒ high variance
 • Low variance ⇒ high bias
 • How can we deal with this in practice?
Reduce Variance Without Increasing Bias

• Averaging reduces variance: let $Z_1, ..., Z_N$ be i.i.d random variables

$$\text{Var} \left(\frac{1}{N} \sum_i Z_i \right) = \frac{1}{N} \text{Var}(Z_i)$$

• Idea: average models to reduce model variance

• The problem
 • Only one training set
 • Where do multiple models come from?
Bagging: Bootstrap Aggregation

- Take repeated bootstrap samples from training set D (Breiman, 1994)
- **Bootstrap sampling**: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D
- **Bagging**:
 - Create k bootstrap samples D_1, \ldots, D_k
 - Train distinct classifier on each D_i
 - Classify new instance by majority vote / average
Bagging: Bootstrap Aggregation

1. **Step 1:** Create Multiple Data Sets
 - D₀ → D₁ → D₂ → ... → Dₜ

2. **Step 2:** Build Multiple Classifiers
 - C₁ → C₂ → Cₜ₋₁ → Cₜ

3. **Step 3:** Combine Classifiers
 - C₁ ∪ C₂ ∪ ... ∪ Cₜ → C^*

[Image from the slides of David Sontag]
Bagging

<table>
<thead>
<tr>
<th>Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>BS 2</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>BS 3</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability \(\left(1 - \frac{1}{N}\right)^N \) of not being selected
- Expected number of distinct data points in each sample is then

\[
N \cdot \left(1 - \left(1 - \frac{1}{N}\right)^N\right) \approx N \cdot (1 - \exp(-1)) = 0.632 \cdot N
\]
Bagging

<table>
<thead>
<tr>
<th>Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 1</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>BS 2</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>BS 3</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability \(\left(1 - \frac{1}{N}\right)^N \) of not being selected
 - If we have 1 TB of data, each bootstrap sample will be \(\sim 632GB \) (this can present computational challenges, e.g., you shouldn’t replicate the data)
Decision Tree Bagging

[image from the slides of David Sontag]
Decision Tree Bagging (100 Bagged Trees)

[Image from the slides of David Sontag]
Bagging Results

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Without Bagging</th>
<th>With Bagging</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>29.1</td>
<td>19.3</td>
<td>34%</td>
</tr>
<tr>
<td>heart</td>
<td>4.9</td>
<td>2.8</td>
<td>43%</td>
</tr>
<tr>
<td>breast cancer</td>
<td>5.9</td>
<td>3.7</td>
<td>37%</td>
</tr>
<tr>
<td>ionosphere</td>
<td>11.2</td>
<td>7.9</td>
<td>29%</td>
</tr>
<tr>
<td>diabetes</td>
<td>25.3</td>
<td>23.9</td>
<td>6%</td>
</tr>
<tr>
<td>glass</td>
<td>30.4</td>
<td>23.6</td>
<td>22%</td>
</tr>
<tr>
<td>soybean</td>
<td>8.6</td>
<td>6.8</td>
<td>21%</td>
</tr>
</tbody>
</table>

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994
Random Forests

Step 1: Create random vectors

Step 2: Use random vector to build multiple decision trees

Step 3: Combine decision trees

Original Training data

D

D1

D2

Dt-1

Dt

T1

T2

T1-1

T1

T*

D

Randomize
Random Forests

- Ensemble method specifically designed for decision tree classifiers

- Introduce two sources of randomness: “bagging” and “random input vectors”

 - **Bagging method**: each tree is grown using a bootstrap sample of training data

 - **Random vector method**: best split at each node is chosen from a random sample of m attributes instead of all attributes
Random Forest Algorithm

- For $b = 1$ to B
 - Draw a bootstrap sample of size N from the data
 - Grow a tree T_b using the bootstrap sample as follows
 - Choose m attributes uniformly at random from the data
 - Choose the best attribute among the m to split on
 - Split on the best attribute and recurse (until partitions have fewer than s_{min} number of nodes)

- Prediction for a new data point x
 - Regression: $\frac{1}{B} \sum_b T_b(x)$
 - Classification: choose the majority class label among $T_1(x), \ldots, T_B(x)$
A demo of random forests implemented in JavaScript
When Will Bagging Improve Accuracy?

• Depends on the stability of the base-level classifiers

• A learner is unstable if a small change to the training set causes a large change in the output hypothesis

 • If small changes in D cause large changes in the output, then there will likely be an improvement in performance with bagging

• Bagging can help unstable procedures, but could hurt the performance of stable procedures

 • Decision trees are unstable

 • k-nearest neighbor is stable