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Dual SVM

max
𝜆𝜆≥0

−
1
2
�
𝑖𝑖

�
𝑗𝑗

𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥 𝑖𝑖 𝑇𝑇𝑥𝑥 𝑗𝑗 + �
𝑖𝑖

𝜆𝜆𝑖𝑖

such that

�
𝑖𝑖

𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0

• The dual formulation only depends on inner products between 
the data points

• Same thing is true if we use feature vectors instead
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Dual SVM
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�
𝑖𝑖

𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0

• The dual formulation only depends on inner products between 
the data points

• Same thing is true if we use feature vectors instead

3



The Kernel Trick
• For some feature vectors, we can compute the inner products quickly, 

even if the feature vectors are very large

• This is best illustrated by example

• Let 𝜙𝜙 𝑥𝑥1, 𝑥𝑥2 =

𝑥𝑥1𝑥𝑥2
𝑥𝑥2𝑥𝑥1
𝑥𝑥12

𝑥𝑥22

• 𝜙𝜙 𝑥𝑥1, 𝑥𝑥2 𝑇𝑇𝜙𝜙 𝑧𝑧1, 𝑧𝑧2 = 𝑥𝑥12𝑧𝑧12 + 2𝑥𝑥1𝑥𝑥2𝑧𝑧1𝑧𝑧2 + 𝑥𝑥22𝑧𝑧22

= 𝑥𝑥1𝑧𝑧1 + 𝑥𝑥2𝑧𝑧2 2

= 𝑥𝑥𝑇𝑇𝑧𝑧 2
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The Kernel Trick
• For some feature vectors, we can compute the inner products quickly, 

even if the feature vectors are very large

• This is best illustrated by example

• Let 𝜙𝜙 𝑥𝑥1, 𝑥𝑥2 =

𝑥𝑥1𝑥𝑥2
𝑥𝑥2𝑥𝑥1
𝑥𝑥12

𝑥𝑥22

• 𝜙𝜙 𝑥𝑥1, 𝑥𝑥2 𝑇𝑇𝜙𝜙 𝑧𝑧1, 𝑧𝑧2 = 𝑥𝑥12𝑧𝑧12 + 2𝑥𝑥1𝑥𝑥2𝑧𝑧1𝑧𝑧2 + 𝑥𝑥22𝑧𝑧22

= 𝑥𝑥1𝑧𝑧1 + 𝑥𝑥2𝑧𝑧2 2

= 𝑥𝑥𝑇𝑇𝑧𝑧 2

Reduces to a dot 
product in the original 
space
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The Kernel Trick

• The same idea can be applied for the feature vector 𝜙𝜙 of all 
polynomials of degree (exactly) 𝑑𝑑

• 𝜙𝜙 𝑥𝑥 𝑇𝑇𝜙𝜙 𝑧𝑧 = 𝑥𝑥𝑇𝑇𝑧𝑧 𝑑𝑑

• More generally, a kernel is a function 
𝑘𝑘 𝑥𝑥, 𝑧𝑧 = 𝜙𝜙 𝑥𝑥 𝑇𝑇𝜙𝜙(𝑧𝑧) for some feature map 𝜙𝜙

• Rewrite the dual objective

max
𝜆𝜆≥0,∑𝑖𝑖 𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖=0

−
1
2
�
𝑖𝑖

�
𝑗𝑗

𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑘𝑘(𝑥𝑥(𝑖𝑖), 𝑥𝑥 𝑗𝑗 ) + �
𝑖𝑖

𝜆𝜆𝑖𝑖
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Examples of Kernels
• Polynomial kernel of degree exactly 𝑑𝑑

• 𝑘𝑘 𝑥𝑥, 𝑧𝑧 = 𝑥𝑥𝑇𝑇𝑧𝑧 𝑑𝑑

• General polynomial kernel of degree 𝑑𝑑 for some 𝑐𝑐

• 𝑘𝑘 𝑥𝑥, 𝑧𝑧 = 𝑥𝑥𝑇𝑇𝑧𝑧 + 𝑐𝑐 𝑑𝑑

• Gaussian kernel for some 𝜎𝜎

• 𝑘𝑘 𝑥𝑥, 𝑧𝑧 = exp − 𝑥𝑥−𝑧𝑧 2

2𝜎𝜎2

• The corresponding 𝜙𝜙 is infinite dimensional!

• So many more…
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Gaussian Kernels
• Consider the Gaussian kernel

exp
− 𝑥𝑥 − 𝑧𝑧 2

2𝜎𝜎2
= exp

− 𝑥𝑥 − 𝑧𝑧 𝑇𝑇(𝑥𝑥 − 𝑧𝑧)
2𝜎𝜎2

= exp
− 𝑥𝑥 2 + 2𝑥𝑥𝑇𝑇𝑧𝑧 − 𝑧𝑧 2

2𝜎𝜎2

= exp −
𝑥𝑥 2

2𝜎𝜎2
exp −

𝑧𝑧 2

2𝜎𝜎2
exp

𝑥𝑥𝑇𝑇𝑧𝑧
𝜎𝜎2

• Use the Taylor expansion for exp()

exp
𝑥𝑥𝑇𝑇𝑧𝑧
𝜎𝜎2

= �
𝑛𝑛=0

∞
𝑥𝑥𝑇𝑇𝑧𝑧 𝑛𝑛

𝜎𝜎2𝑛𝑛𝑛𝑛!
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Gaussian Kernels
• Consider the Gaussian kernel

exp
− 𝑥𝑥 − 𝑧𝑧 2

2𝜎𝜎2
= exp

− 𝑥𝑥 − 𝑧𝑧 𝑇𝑇(𝑥𝑥 − 𝑧𝑧)
2𝜎𝜎2

= exp
− 𝑥𝑥 2 + 2𝑥𝑥𝑇𝑇𝑧𝑧 − 𝑧𝑧 2

2𝜎𝜎2

= exp −
𝑥𝑥 2

2𝜎𝜎2
exp −

𝑧𝑧 2

2𝜎𝜎2
exp

𝑥𝑥𝑇𝑇𝑧𝑧
𝜎𝜎2

• Use the Taylor expansion for exp()

exp
𝑥𝑥𝑇𝑇𝑧𝑧
𝜎𝜎2

= �
𝑛𝑛=0

∞
𝑥𝑥𝑇𝑇𝑧𝑧 𝑛𝑛

𝜎𝜎2𝑛𝑛𝑛𝑛!
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Polynomial kernels of 
every degree!



Kernels
• Bigger feature space increases the possibility of overfitting

• Large margin solutions may still generalize reasonably well

• Alternative:  add “penalties” to the objective to disincentivize 
complicated solutions

min
𝑤𝑤

1
2
𝑤𝑤 2 + 𝑐𝑐 ⋅ (# 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑜𝑜𝑛𝑛𝑚𝑚)

• Not a quadratic program anymore (in fact, it’s NP-hard)

• Similar problem to counting the number of misclassifications, 
no notion of how badly the data is misclassified
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SVMs with Slack

• Allow misclassification

• Penalize misclassification linearly (just like in the perceptron 
algorithm)

• Again, easier to work with than counting 
misclassifications

• Objective stays convex

• Will let us handle data that isn’t linearly separable!
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚
Potentially allows some 
points to be 
misclassified/inside the 
margin
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

Constant c determines 
degree to which slack is 
penalized
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

• How does this objective change with 𝑐𝑐?
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

• How does this objective change with 𝑐𝑐?

• As 𝑐𝑐 → ∞, requires a perfect classifier

• As 𝑐𝑐 → 0, allows arbitrary classifiers (i.e., ignores the data)
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

• How should we pick 𝑐𝑐?

17



SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

• How should we pick 𝑐𝑐?

• Divide the data into three pieces training, testing, and 
validation

• Use the validation set to tune the value of the 
hyperparameter 𝑐𝑐
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Evaluation Methodology

• General learning strategy

• Build a classifier using the training data

• Select hyperparameters using validation data

• Evaluate the chosen model with the selected 
hyperparameters on the test data

19

How can we tell if we overfit the training data?



ML in Practice
• Gather Data + Labels
• Select feature vectors
• Randomly split into three groups

• Training set
• Validation set
• Test set 

• Experimentation cycle 
• Select a “good” hypothesis from the hypothesis space
• Tune hyperparameters using validation set
• Compute accuracy on test set (fraction of correctly classified 

instances)
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

• What is the optimal value of 𝜉𝜉 for fixed 𝑤𝑤 and 𝑏𝑏?
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

• What is the optimal value of 𝜉𝜉 for fixed 𝑤𝑤 and 𝑏𝑏?

• If 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1, then 𝜉𝜉𝑖𝑖 = 0

• If 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 < 1, then 𝜉𝜉𝑖𝑖 = 1 − 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏
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SVMs with Slack

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

• We can formulate this slightly differently 

• 𝜉𝜉𝑖𝑖 = max 0, 1 − 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏

• Does this look familiar?

• Hinge loss provides an upper bound on Hamming loss
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Hinge Loss Formulation
• Obtain a new objective by substituting in for 𝜉𝜉

min
𝑤𝑤,𝑏𝑏

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

max 0, 1 − 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏

24

Can minimize with gradient descent!



Hinge Loss Formulation
• Obtain a new objective by substituting in for 𝜉𝜉

min
𝑤𝑤,𝑏𝑏

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

max 0, 1 − 𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏

25

Hinge lossPenalty to prevent 
overfitting



Imbalanced Data

• If the data is imbalanced (i.e., more positive examples than 
negative examples), may want to evenly distribute the error 
between the two classes

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2

𝑤𝑤 2 +
𝑐𝑐
𝑁𝑁+

�
𝑖𝑖:𝑦𝑦𝑖𝑖=1

𝜉𝜉𝑖𝑖 +
𝑐𝑐
𝑁𝑁−

�
𝑖𝑖:𝑦𝑦𝑖𝑖=−1

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚

26



Dual of Slack Formulation

min
𝑤𝑤,𝑏𝑏,𝜉𝜉

1
2
𝑤𝑤 2 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖

such that
𝑦𝑦𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1 − 𝜉𝜉𝑖𝑖 , for all 𝑚𝑚

𝜉𝜉𝑖𝑖 ≥ 0, for all 𝑚𝑚
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Dual of Slack Formulation

𝐿𝐿 𝑤𝑤, 𝑏𝑏, 𝜉𝜉, 𝜆𝜆, 𝜇𝜇 =
1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝑐𝑐�

𝑖𝑖

𝜉𝜉𝑖𝑖 + �
𝑖𝑖

𝜆𝜆𝑖𝑖(1 − 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏)) + �
𝑖𝑖

−𝜇𝜇𝑖𝑖𝜉𝜉𝑖𝑖

Convex in 𝑤𝑤, 𝑏𝑏, 𝜉𝜉, so take derivatives to form the dual

𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑘𝑘

= 𝑤𝑤𝑘𝑘 + �
𝑖𝑖

−𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑘𝑘
(𝑖𝑖) = 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝑏𝑏

= �
𝑖𝑖

−𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0

𝜕𝜕𝐿𝐿
𝜕𝜕𝜉𝜉𝑘𝑘

= 𝑐𝑐 − 𝜆𝜆𝑘𝑘 − 𝜇𝜇𝑘𝑘 = 0
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Dual of Slack Formulation

max
𝜆𝜆≥0

−
1
2
�
𝑖𝑖

�
𝑗𝑗

𝜆𝜆𝑖𝑖𝜆𝜆𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥 𝑖𝑖 𝑇𝑇𝑥𝑥 𝑗𝑗 + �
𝑖𝑖

𝜆𝜆𝑖𝑖

such that
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𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 = 0

𝑐𝑐 ≥ 𝜆𝜆𝑖𝑖 ≥ 0, for all 𝑚𝑚
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Generalization

• We argued, intuitively, that SVMs generalize better than the 
perceptron algorithm

• How can we make this precise?

• Coming soon... but first...
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Roadmap
• Where are we headed?

• Other simple hypothesis spaces for supervised learning

• 𝑘𝑘 nearest neighbor

• Decision trees

• Learning theory

• Generalization and PAC bounds

• VC dimension

• Bias/variance tradeoff
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