Principle Component Analysis

Nicholas Ruozzi
University of Texas at Dallas
Eigenvalues

• λ is an eigenvalue of a matrix $A \in \mathbb{R}^{n \times n}$ if the linear system $Ax = \lambda x$ has at least one non-zero solution.

• If $Ax = \lambda x$ we say that λ is an eigenvalue of A with corresponding eigenvector x.

• Could be multiple eigenvectors for the same λ.
Eigenvalues of Symmetric Matrices

• If \(A \in \mathbb{R}^{n \times n} \) is symmetric, then it has \(n \) linearly independent eigenvectors \(v_1, \ldots, v_n \) corresponding to \(n \) real eigenvalues.

• Moreover, it has \(n \) linearly independent orthonormal eigenvectors:

 \[
 v_i^T v_j = 0 \quad \text{for all } i \neq j

 \quad \text{and}\quad
 v_i^T v_i = 1 \quad \text{for all } i
 \]
Eigenvalues of Symmetric Matrices

• If $A \in \mathbb{R}^{n \times n}$ is symmetric, then it has n linearly independent eigenvectors $v_1, ..., v_n$ corresponding to n real eigenvalues.

• A symmetric matrix is positive definite if and only if all of its eigenvalues are positive.

 • The orthonormal eigenvectors form a basis of \mathbb{R}^n (similar to the standard coordinate axes).
Examples

• The 2x2 identity matrix has all of its eigenvalues equal to 1 (it is positive definite) with orthonormal eigenvectors \([\begin{align*} 1 \\ 0 \end{align*}]\) and \([\begin{align*} 0 \\ 1 \end{align*}]\).

• The matrix \([\begin{align*} 1 & 1 \\ 1 & 1 \end{align*}]\) has eigenvalues 0 and 2 with orthonormal eigenvectors \([\begin{align*} -1 \\ \frac{1}{\sqrt{2}} \end{align*}]\) and \([\begin{align*} 1 \\ \frac{1}{\sqrt{2}} \end{align*}]\).

• The matrix \([\begin{align*} 2 & 1 \\ 1 & 2 \end{align*}]\) has eigenvalues 1 and 3 with orthonormal eigenvectors \([\begin{align*} -1 \\ \frac{1}{\sqrt{2}} \end{align*}]\) and \([\begin{align*} 1 \\ \frac{1}{\sqrt{2}} \end{align*}]\).
• Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric

• Any $x \in \mathbb{R}^n$ can be written as $x = \sum_{i=1}^{n} c_i v_i$ where v_1, \ldots, v_n are the eigenvectors of A

 • $Ax = \sum_{i=1}^{n} \lambda_i c_i v_i$
 • $A^2 x = \sum_{i=1}^{n} \lambda_i^2 c_i v_i$
 • $A^t x = \sum_{i=1}^{n} \lambda_i^t c_i v_i$
Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric

Any $x \in \mathbb{R}^n$ can be written as $x = \sum_{i=1}^{n} c_i v_i$ where $v_1, ..., v_n$ are the eigenvectors of A

$c_i = v_i^T x$, this is the projection of x along the line given by v_i (assuming that v_i is a unit vector)
Eigenvalues of Symmetric Matrices

- Let $Q \in \mathbb{R}^{n \times n}$ be the matrix whose i^{th} column is v_i and $D \in \mathbb{R}^{n \times n}$ be the diagonal matrix such that $D_{ii} = \lambda_i$

 - $Ax = QDQ^T x$

 - Can throw away some eigenvectors to approximate this quantity
 - For example, let Q_k be the matrix formed by keeping only the top k eigenvectors and D_k be the diagonal matrix whose diagonal consists of the top k eigenvalues
Frobenius Norm

• The Frobenius norm is a matrix norm given by

\[\|A\|_F = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |A_{ij}|^2}\]

• \(Q_k D_k Q_k^T\) is the best rank \(k\) approximation of the symmetric matrix \(A\) with respect to the Frobenius norm

\[Q_k D_k Q_k^T = \arg\min_{B \in \mathbb{R}^{n \times n} \text{ s.t. } \text{rank}(B) = k} \|A - B\|_F\]
Principal Component Analysis

• Principle component analysis

 • Can be used to reduce the dimensionality of the data while still maintaining a good approximation of the sample mean and variance

 • Can also be used for selecting good features that are combinations of the input features

 • Unsupervised – just finds a good representation of the data in terms of combinations of the input features
Principal Component Analysis

- Input a collection of data points sampled from some distribution $x_1, ..., x_p \in \mathbb{R}^n$

- Construct the matrix $W \in \mathbb{R}^{n \times p}$ whose i^{th} column is

 $$x_i - \frac{\sum_j x_j}{p}$$

- The matrix WW^T is the sample covariance matrix
 - WW^T is symmetric and positive semidefinite
Principal Component Analysis

• PCA finds a set of orthogonal vectors that best explain the variance of the sample covariance matrix

 • From our previous discussion, these are exactly the eigenvectors of WW^T

 • We can discard the eigenvectors corresponding to small magnitude eigenvalues to yield an approximation

 • Simple algorithm to describe, MATLAB and other programming languages have built in support for eigenvector computation
PCA in Practice

• Forming the matrix WW^T can require a lot of memory (especially if $n \gg p$)

 • Need a faster way to compute this without forming the matrix explicitly

 • Typical approach: use the singular value decomposition
Singular Value Decomposition (SVD)

• Every matrix $B \in \mathbb{R}^{n \times p}$ admits a decomposition of the form

$$B = U\Sigma V^T$$

• where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, $\Sigma \in \mathbb{R}^{n \times p}$ is non-negative diagonal matrix, and $V \in \mathbb{R}^{p \times p}$ is an orthogonal matrix

• A matrix $C \in \mathbb{R}^{m \times m}$ is orthogonal if $C^T = C^{-1}$. Equivalently, the rows and columns of C are orthonormal vectors
Singular Value Decomposition (SVD)

• Every matrix $B \in \mathbb{R}^{n \times p}$ admits a decomposition of the form

$$B = U \Sigma V^T$$

Diagonal elements of Σ called singular values

• where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, $\Sigma \in \mathbb{R}^{n \times p}$ is non-negative diagonal matrix, and $V \in \mathbb{R}^{p \times p}$ is an orthogonal matrix

• A matrix $C \in \mathbb{R}^{m \times m}$ is **orthogonal** if $C^T = C^{-1}$. Equivalently, the rows and columns of C are orthonormal vectors
Returning to PCA

Let $W = U \Sigma V^T$ be the SVD of W

$WW^T = U \Sigma V^T V \Sigma^T U^T = U \Sigma \Sigma^T U^T$

If we can compute the SVD of W, then we don't need to form the matrix WW^T
SVD and PCA

• For any matrix A, AA^T is symmetric and positive semidefinite

 • Let $A = UΣV^T$ be the SVD of A

 • $AA^T = UΣV^TVΣ^TU^T = UΣΣ^TU^T$

 • U must be a matrix of eigenvectors of AA^T

 • The eigenvalues of AA^T are all non-negative because $ΣΣ^T = Σ^2$ which are the square of the singular values of A
An Example: “Eigenfaces”

• Let’s suppose that our data is a collection of images of the faces of individuals
An Example: “Eigenfaces”

• Let’s suppose that our data is a collection of images of the faces of individuals

• The goal is, given the "training data", to correctly match new images to the training data

• Let’s suppose that each image is an $s \times s$ array of pixels: $x_i \in R^n, n = s^2$

• As before, construct the matrix $W \in \mathbb{R}^{n \times p}$ whose i^{th} column is $x_i - \sum_j \frac{x_j}{p}$
An Example: “Eigenfaces”

- Forming the matrix WW^T requires a lot of memory
 - $s = 256$ means WW^T is 65536×65536
 - Need a faster way to compute this without forming the matrix explicitly
- Could use the singular value decomposition
An Example: “Eigenfaces”

- A different approach when $p \ll n$
 - Compute the eigenvectors of $A^T A$ (this is an $p \times p$ matrix)
 - Let v be an eigenvector of $A^T A$ with eigenvalue λ
 - $AA^T Av = \lambda Av$
 - This means that Av is an eigenvector of AA^T with eigenvalue λ (or 0)
 - Save the top k eigenvectors - called eigenfaces in this example
An Example: “Eigenfaces”

- The data in the matrix is “training data”
 - Given a new image, we’d like to determine which, if any, member of the data set that it is most similar to

- Step 1: Compute the projection of the recentered, new image onto each of the k eigenvectors
 - This gives us a vector of weights c_1, \ldots, c_k
An Example: “Eigenfaces”

- The data in the matrix is “training data”
 - Given a new image, we’d like to determine which, if any, member of the data set that it is most similar to
- Step 2: Determine if the input image is close to one of the faces in the data set
 - If the distance between the input and it's approximation is too large, then the input is likely not a face
An Example: “Eigenfaces”

• The data in the matrix is “training data”
 • Given a new image, we’d like to determine which, if any, member of the data set that it is most similar to
• Step 3: Find the person in the training data that is closest to the new input
 • Replace each group of training images by its average
 • Compute the distance to the i^{th} average $\|c - a^i\|$ where a^i are the coefficients of the average face for person i