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Eigenvalues

« Aisan eigenvalue of a matrix A € R™" if the linear system
Ax = Ax has at least one non-zero solution

* |If Ax = Ax we say that 1 is an eigenvalue of 4 with
corresponding eigenvector x

e Could be multiple eigenvectors for the same A4



Eigenvalues of Symmetric Matrices

¢ If4A € R™" is symmetric, then it has n linearly independent
eigenvectors vy, ..., U, corresponding to n real eigenvalues

* Moreover, it has n linearly independent orthonormal
eigenvectors

. vaj=0foralli¢j

« v/ v; = 1forall i



Eigenvalues of Symmetric Matrices

¢ If4A € R™" is symmetric, then it has n linearly independent
eigenvectors vy, ..., U, corresponding to n real eigenvalues

A symmetric matrix is positive definite if and only if all of its
eigenvalues are positive

* The orthonormal eigenvectors form a basis of R™ (similar to
the standard coordinate axes)



Examples

 The 2x2 identity matrix has all of its eigenvalues equal to 1 (it is

positive definite) with orthonormal eigenvectors [(1)] and [(1)]

* The matrix H ﬂ has eigenvalues 0 and 2 with orthonormal

.t L
eigenvectors ‘/f and ‘/f
V2 V2.

* The matrix [1 2] has elgenvalues 1 and 3 with orthonormal

eigenvectors and
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Eigenvalues

e Suppose A € R™™ js symmetric

* Any x € R" can be written as x = )., ¢c;v; where vy, ..., v, are
the eigenvectors of A

— n
© Ax = )ioq iy

2., _yNn 92
* A%x = Lim Af Gy

t,, — ' t
© ATx = L= AiGiv



Eigenvalues

e Suppose A € R™™ js symmetric

* Any x € R" can be written as x = )., ¢c;v; where vy, ..., v, are
the eigenvectors of A

(¢ = viTx, this is the projection of x along the line given by v;
(assuming that v; is a unit vector)



Eigenvalues of Symmetric Matrices

* Let Q € R™" be the matrix whose i*"* columnis v; and D €
R™ ™ be the diagonal matrix such that D;; = A;

« Ax = QDQ"x

* Can throw away some eigenvectors to approximate this
guantity

* For example, let Q; be the matrix formed by keeping only
the top k eigenvectors and Dy, be the diagonal matrix
whose diagonal consists of the top k eigenvalues



Frobenius Norm

 The Frobenius norm is a matrix norm given by

n n
I1AllF = 22' l]|2

=1 j=1
\

. QkaQ,Z is the best rank k approximation of the symmetric
matrix A with respect to the Frobenius norm

QD Qi = argmin |1A — Bll|F
BeR"X g t. rank(B)=k



Principal Component Analysis

* Principle component analysis

* Can be used to reduce the dimensionality of the data while
still maintaining a good approximation of the sample mean
and variance

* Can also be used for selecting good features that are
combinations of the input features

* Unsupervised — just finds a good representation of the data
in terms of combinations of the input features
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Principal Component Analysis

* Input a collection of data points sampled from some distribution
X1y, Xp € R™

e Construct the matrix W € R™ P whose it" column is
2%
p

Xi

* The matrix WIWT is the sample covariance matrix

« WWT is symmetric and positive semidefinite
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Principal Component Analysis

 PCA finds a set of orthogonal vectors that best explain the
variance of the sample covariance matrix

* From our previous discussion, these are exactly the
eigenvectors of WW T

* We can discard the eigenvectors corresponding to small
magnitude eigenvalues to yield an approximation

* Simple algorithm to describe, MATLAB and other
programming languages have built in support for eigenvector
computation

12



PCA in Practice

* Forming the matrix WWT can require a lot of memory
(especially if n >> p)

* Need a faster way to compute this without forming the
matrix explicitly

* Typical approach: use the singular value decomposition
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Singular Value Decomposition (SVD)

* Every matrix B € R™P admits a decomposition of the form

B =UxyT

* where U € R™" is an orthogonal matrix, Z € R™*? is non-
negative diagonal matrix, and V € RP*P is an orthogonal
matrix

« A matrix C € R™™ js orthogonal if CT = C~1. Equivalently,
the rows and columns of C are orthonormal vectors
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Singular Value Decomposition (SVD)

* Every matrix B € R™P admits a decomposition of the form

B = UZVT Diagonal elements of X called
singular values

* where U € R™" is an orthogonal matrix, Z € R™*? is non-
negative diagonal matrix, and V € RP*P is an orthogonal
matrix

« A matrix C € R™™ js orthogonal if CT = C~1. Equivalently,
the rows and columns of C are orthonormal vectors
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SVD and PCA

* Returning to PCA
e Let W = UXVT be the SVD of W
e WWT =yuzvtyetu? = uzztu?

* |f we can compute the SVD of I/, then we don't need to form
the matrix WW T
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SVD and PCA

* For any matrix 4, AA"T is symmetric and positive semidefinite
e Let A =UXVT betheSVDof A
« AAT = vuzvTvetuT = uzztu”
* U must be a matrix of eigenvectors of AA”

* The eigenvalues of AA" are all non-negative because XX7 =
Y2 which are the square of the singular values of A
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An Example: “Eigenfaces”

* Let’s suppose that our data is a collection of images of the faces
of individuals
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An Example: “Eigenfaces”

* Let’s suppose that our data is a collection of images of the faces
of individuals

 The goal is, given the "training data", to correctly match new
images to the training data

* Let’s suppose that each image is an s X s array of pixels: x; €
R™ n = s?

 As before, construct the matrix W € R™¥P whose it" column

. Xj
is x; —Zj?’
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An Example: “Eigenfaces”

* Forming the matrix WWT requires a lot of memory
e s =256 means WWT is 65536 X 65536

* Need a faster way to compute this without forming the
matrix explicitly

* Could use the singular value decomposition
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An Example: “Eigenfaces”

* Adifferent approach whenp <K n
e Compute the eigenvectors of AT A (this is an p X p matrix)

* Let v be an eigenvector of AT A with eigenvalue A

AATAv = AAv

This means that Av is an eigenvector of AAT with eigenvalue
A (or 0)

Save the top k eigenvectors - called eigenfaces in this
example
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An Example: “Eigenfaces”

* The data in the matrix is “training data”

* Given a new image, we’d like to determine which, if any,
member of the data set that it is most similar to

* Step 1: Compute the projection of the recentered, new image
onto each of the k eigenvectors

* This gives us a vector of weights ¢4, ..., i
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An Example: “Eigenfaces”

* The data in the matrix is “training data”

* Given a new image, we’d like to determine which, if any,
member of the data set that it is most similar to

* Step 2: Determine if the input image is close to one of the faces
in the data set

* |f the distance between the input and it's approximation is
too large, then the input is likely not a face
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An Example: “Eigenfaces”

 The data in the matrix is “training data”

* Given a new image, we’d like to determine which, if any,
member of the data set that it is most similar to

e Step 3: Find the person in the training data that is closest to the
new input

* Replace each group of training images by its average

e Compute the distance to the it" average ||c — ai” where a'
are the coefficients of the average face for person i

24



	Principle Component Analysis�
	Eigenvalues
	Eigenvalues of Symmetric Matrices
	Eigenvalues of Symmetric Matrices
	Examples
	Eigenvalues
	Eigenvalues
	Eigenvalues of Symmetric Matrices
	Frobenius Norm
	Principal Component Analysis
	Principal Component Analysis
	Principal Component Analysis
	PCA in Practice
	Singular Value Decomposition (SVD)
	Singular Value Decomposition (SVD)
	SVD and PCA
	SVD and PCA
	An Example:  “Eigenfaces”
	An Example:  “Eigenfaces”
	An Example:  “Eigenfaces”
	An Example:  “Eigenfaces”
	An Example:  “Eigenfaces”
	An Example:  “Eigenfaces”
	An Example:  “Eigenfaces”

