

Support Vector Machines

Nicholas Ruozzi
University of Texas at Dallas

Slides adapted from David Sontag and Vibhav Gogate

Support Vector Machines

- How can we decide between perfect classifiers?

Support Vector Machines

- How can we decide between perfect classifiers?

Support Vector Machines

- Define the margin to be the distance of the closest data point to the classifier

Support Vector Machines

- Support vector machines (SVMs)

- Choose the classifier with the largest margin
- Has good practical and theoretical performance

Some Geometry

- In n dimensions, a hyperplane is a solution to the equation

$$
w^{T} x+b=0
$$

with $w \in \mathbb{R}^{n}, b \in \mathbb{R}$

- The vector w is sometimes called the normal vector of the hyperplane

Some Geometry

- In n dimensions, a hyperplane is a solution to the equation

$$
w^{T} x+b=0
$$

- Note that this equation is scale invariant for any scalar c

$$
c \cdot\left(w^{T} x+b\right)=0
$$

Some Geometry

- The distance between a point y and a hyperplane $w^{T}+b=0$ is the length of the segment perpendicular to the line to the point y
- The vector from y to z is given by

$$
y-z=\|y-z\| \frac{w}{\|w\|}
$$

Scale Invariance

- By scale invariance, we can assume that $c=1$
- The maximum margin is always attained by choosing $w^{T} x+b=$ 0 so that it is equidistant from the closest data point classified as +1 and the closest data point classified as -1

Scale Invariance

- We want to maximize the margin subject to the constraints that

$$
y^{(i)}\left(w^{T} x^{(i)}+b\right) \geq 1
$$

- But how do we compute the size of the margin?

Some Geometry

$w^{T} x+b=1$

Putting it all together

$$
y-z=\|y-z\| \frac{w}{\|w\|}
$$

and

$$
\begin{aligned}
& w^{T} y+b=1 \\
& w^{T} z+b=0
\end{aligned}
$$

$$
w^{T}(y-z)=1
$$

and

$$
\begin{aligned}
& \quad w^{T}(y-z)=\|y-z\|\|w\| \\
& \text { which gives }
\end{aligned}
$$

$$
\|y-z\|=1 /\|w\|
$$

SVMs

- This analysis yields the following optimization problem

$$
\max _{w, b} \frac{1}{\|w\|}
$$

such that

$$
y^{(i)}\left(w^{T} x^{(i)}+b\right) \geq 1, \text { for all } i
$$

- Or, equivalently,

$$
\min _{w, b}\|w\|^{2}
$$

such that

$$
y^{(i)}\left(w^{T} x^{(i)}+b\right) \geq 1, \text { for all } i
$$

SVMs

$$
\min _{w, b}\|w\|^{2}
$$

such that

$$
y^{(i)}\left(w^{T} x^{(i)}+b\right) \geq 1, \text { for all } i
$$

- This is a standard quadratic programming problem
- Falls into the class of convex optimization problems
- Can be solved with many specialized optimization tools (e.g., quadprog() in MATLAB)

SVMs

- Where does the name come from?
- The set of all data points such that $y^{(i)}\left(w^{T} x^{(i)}+b\right)=1$ are called support vectors
- The SVM classifier is completely determined by the support vectors (you could delete the rest of the data and get the same answer)

SVMs

- What if the data isn't linearly separable?
- What if we want to do more than just binary classification (i.e., if $y \in\{1,2,3\})$?

