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• How can we decide between perfect classifiers?
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• Define the margin to be the distance of the closest data point 
to the classifier
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• Support vector machines (SVMs)

• Choose the classifier with the largest margin

• Has good practical and theoretical performance

Support Vector Machines

+
+

+
+

+

+
+

+

+

++

+
_

_

_

_

_

_

_

_ _

_

5



• In 𝑛𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

with 𝑤𝑤 ∈ ℝ𝑛𝑛, 𝑏𝑏 ∈ ℝ

• The vector 𝑤𝑤 is sometimes called the normal vector of the 
hyperplane

Some Geometry

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑤𝑤
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• In 𝑛𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

• Note that this equation is scale invariant for any scalar 𝑐𝑐

𝑐𝑐 ⋅ 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

Some Geometry

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑤𝑤
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• The distance between a point 𝑦𝑦 and a hyperplane 𝑤𝑤𝑇𝑇 + 𝑏𝑏 = 0 is 
the length of the segment perpendicular to the line to the point 
𝑦𝑦

• The vector from 𝑦𝑦 to 𝑧𝑧 is given by

𝑦𝑦 − 𝑧𝑧 = 𝑦𝑦 − 𝑧𝑧
𝑤𝑤
𝑤𝑤

Some Geometry

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦
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• By scale invariance, we can assume that 𝑐𝑐 = 1

• The maximum margin is always attained by choosing 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 =
0 so that it is equidistant from the closest data point classified as 
+1 and the closest data point classified as -1

Scale Invariance

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝑐𝑐
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• We want to maximize the margin subject to the constraints that

𝑦𝑦(𝑖𝑖) 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1

• But how do we compute the size of the margin?

Scale Invariance
𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝑐𝑐 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = −𝑐𝑐
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Putting it all together

𝑦𝑦 − 𝑧𝑧 = 𝑦𝑦 − 𝑧𝑧
𝑤𝑤
𝑤𝑤

and
𝑤𝑤𝑇𝑇𝑦𝑦 + 𝑏𝑏 = 1
𝑤𝑤𝑇𝑇𝑧𝑧 + 𝑏𝑏 = 0

Some Geometry

𝑤𝑤𝑇𝑇 𝑦𝑦 − 𝑧𝑧 = 1
and
𝑤𝑤𝑇𝑇 𝑦𝑦 − 𝑧𝑧 = 𝑦𝑦 − 𝑧𝑧 𝑤𝑤

which gives
𝑦𝑦 − 𝑧𝑧 = 1/ 𝑤𝑤

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 1 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = −1
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SVMs

• This analysis yields the following optimization problem

max
𝑤𝑤,𝑏𝑏

1
𝑤𝑤

such that
𝑦𝑦(𝑖𝑖) 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1, for all 𝑖𝑖

• Or, equivalently,
min
𝑤𝑤,𝑏𝑏

𝑤𝑤 2

such that
𝑦𝑦(𝑖𝑖) 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1, for all 𝑖𝑖
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SVMs

min
𝑤𝑤,𝑏𝑏

𝑤𝑤 2

such that
𝑦𝑦(𝑖𝑖) 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏 ≥ 1, for all 𝑖𝑖

• This is a standard quadratic programming problem

• Falls into the class of convex optimization problems

• Can be solved with many specialized optimization tools (e.g., 
quadprog() in MATLAB)
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SVMs

• Where does the name come from?

• The set of all data points such that 𝑦𝑦(𝑖𝑖)(𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏) = 1 are
called support vectors

• The SVM classifier is completely determined by the support 
vectors (you could delete the rest of the data and get the 
same answer)

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

𝑧𝑧

𝑦𝑦

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 1 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = −1
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SVMs

• What if the data isn’t linearly separable?

• What if we want to do more than just binary classification (i.e., if 
𝑦𝑦 ∈ {1,2,3})?
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