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Last Time

• Probably approximately correct (PAC)

• The only reasonable expectation of a learner is that with high 
probability it learns a close approximation to the target 
concept

• Specify two small parameters, 0 < 𝜖𝜖, 0 < 𝛿𝛿 < 1

• 𝜖𝜖 is the error of the approximation

• (1 − 𝛿𝛿) is the probability that, given 𝑀𝑀 i.i.d. samples, our 
learning algorithm produces a classifier with error at most 
𝜖𝜖
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Learning Theory
• We use the observed data in order to learn a classifier

• Want to know how far the learned classifier deviates from the 
(unknown) underlying distribution

• With too few samples, we will with high probability learn a 
classifier whose true error is quite high even though it may 
be a perfect classifier for the observed data

• As we see more samples, we pick a classifier from the 
hypothesis space with low training error & hope that it also 
has low true error 

• Want this to be true with high probability – can we bound 
how many samples that we need?
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Haussler, 1988

• What we proved last time:

Theorem: For a finite hypothesis space, 𝐻𝐻, with 𝑀𝑀 i.i.d. 
samples, and 0 < 𝜖𝜖 < 1, the probability that any consistent 
classifier has true error larger than 𝜖𝜖 is at most 𝐻𝐻 𝑒𝑒−𝜖𝜖𝜖𝜖

• We can turn this into a sample complexity bound

4



Sample Complexity

• Let 𝛿𝛿 be an upper bound on the desired probability of not 𝜖𝜖-
exhausting the sample space

• The probability that the version space is not 𝜖𝜖-exhausted is at 
most 𝐻𝐻 𝑒𝑒−𝜖𝜖𝜖𝜖 ≤ 𝛿𝛿

• Solving for 𝑀𝑀 yields

𝑀𝑀 ≥ −
1
𝜖𝜖

ln
𝛿𝛿
𝐻𝐻

= ln |𝐻𝐻| + ln
1
𝛿𝛿

/𝜖𝜖
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PAC Bounds

Theorem: For a finite hypothesis space H, 𝑀𝑀 i.i.d. samples, and 
0 < 𝜖𝜖 < 1, the probability that true error of any of the best 
classifiers (i.e., lowest training error) is larger than its training error 
plus 𝜖𝜖 is at most |𝐻𝐻|𝑒𝑒−2𝜖𝜖𝜖𝜖2

• Sample complexity (for desired 𝛿𝛿 ≥ |𝐻𝐻|𝑒𝑒−2𝜖𝜖𝜖𝜖2)

𝑀𝑀 ≥ ln 𝐻𝐻 + ln
1
𝛿𝛿

/2𝜖𝜖2
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿𝛿, 
then with probability (1 − 𝛿𝛿), for all ℎ ∈ 𝐻𝐻

𝜖𝜖ℎ ≤ 𝜖𝜖ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +
1

2𝑀𝑀
ln |𝐻𝐻| + ln

1
𝛿𝛿

• For small |𝐻𝐻|
• High bias (may not be enough hypotheses to choose 

from)
• Low variance
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿𝛿, 
then with probability (1 − 𝛿𝛿), for all ℎ ∈ 𝐻𝐻

𝜖𝜖ℎ ≤ 𝜖𝜖ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +
1

2𝑀𝑀
ln |𝐻𝐻| + ln

1
𝛿𝛿

• For large |𝐻𝐻|
• Low bias (lots of good hypotheses)
• High variance
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VC Dimension

• Our analysis for the finite case was based on |𝐻𝐻|

• If 𝐻𝐻 isn’t finite, this translates into infinite sample complexity

• We can derive a different notion of complexity for infinite 
hypothesis spaces by considering only the number of points 
that can be correctly classified by some member of 𝐻𝐻

• We will only consider the binary classification case for now
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VC Dimension

• What is the largest number of data points in 1-D that can be 
correctly classified by a linear separator (regardless of their 
assigned labels)?

• 2 points:
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VC Dimension

• What is the largest number of data points in 1-D that can be 
correctly classified by a linear separator (regardless of their 
assigned labels)?

• 3 points:
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VC Dimension

• What is the largest number of data points in 1-D that can be 
correctly classified by a linear separator (regardless of their 
assigned labels)?

• 3 points:
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VC Dimension

• What is the largest number of data points in 1-D that can be 
correctly classified by a linear separator (regardless of their 
assigned labels)?

• 3 points:

• 3 points and up: for any collection of three or more there is 
always some choice of pluses and minuses such that that the 
points cannot be classified with a linear separator  (in one 
dimension)
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VC Dimension

• A set of points is shattered by a hypothesis space 𝐻𝐻 if and only if 
for every partition of the set of points into positive and 
negative examples, there exists some consistent ℎ ∈ 𝐻𝐻

• The Vapnik–Chervonenkis (VC) dimension of 𝐻𝐻 over inputs from 
𝑋𝑋 is the size of the largest  finite subset of 𝑋𝑋 shattered by 𝐻𝐻
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VC Dimension

• Common misconception:

• VC dimension is determined by the largest shatterable set of 
points, not the highest number such that all sets of points 
that size can be shattered
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VC Dimension

• Common misconception:

• VC dimension is determined by the largest shatterable set of 
points, not the highest number such that all sets of points 
that size can be shattered
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Can be shattered by a line (no matter the 
labels), so VC dimension is at least 3



VC Dimension

• What is the VC dimension of 2-D space under linear separators?

• It is at least three from the last slide

• Can some set of four points be shattered?
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VC Dimension

• What is the VC dimension of 2-D space under linear separators?

• It is at least three from the last slide

• Can some set of four points be shattered?
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NO!  This means that 
the VC dimension is at 
most 3



VC Dimension

• There exists a set of size 𝑑𝑑 + 1 in a 𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 space that 
can be shattered by a linear separator, but not a set of size 𝑑𝑑 + 2

• The larger the subset of 𝑋𝑋 that can be shattered, the more 
expressive the hypothesis space is

• If arbitrarily large finite subsets of 𝑋𝑋 can be shattered, then 
𝑉𝑉𝑉𝑉 𝐻𝐻 = ∞
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Axis Parallel Rectangles

• Let 𝑋𝑋 be the set of all points in ℝ2

• Let 𝐻𝐻 be the set of all axis parallel rectangles in 2-D 
(inside + outside -)

• What is 𝑉𝑉𝑉𝑉(𝐻𝐻)?
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Axis Parallel Rectangles

• Let 𝑋𝑋 be the set of all points in ℝ2

• Let 𝐻𝐻 be the set of all axis parallel rectangles in 2-D
(inside + outside -)

• 𝑉𝑉𝑉𝑉 𝐻𝐻 ≥ 4
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Axis Parallel Rectangles

• Let 𝑋𝑋 be the set of all points in ℝ2

• Let 𝐻𝐻 be the set of all axis parallel rectangles in 2-D

• 𝑉𝑉𝑉𝑉 𝐻𝐻 = 4

• A rectangle can contain at most 4 extreme points, the fifth 
point must be contained within the rectangle defined by 
these points
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Examples

• VC dimension of one-level decision trees over real vectors of 
length 2?

• VC dimension of linear separators through the origin?

• VC dimension of a hypothesis space with exactly one hypothesis 
in it for binary vectors of length 𝑑𝑑 ≥ 1? 
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Examples

• VC dimension of one-level decision trees over real vectors of 
length 2?

• Three

• VC dimension of linear separators through the origin?

• VC dimension of a hypothesis space with exactly one hypothesis 
in it for binary vectors of length 𝑑𝑑 ≥ 1? 
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Examples

• VC dimension of one-level decision trees over real vectors of 
length 2?

• Three

• VC dimension of linear separators through the origin?

• Two

• VC dimension of a hypothesis space with exactly one hypothesis 
in it for binary vectors of length 𝑑𝑑 ≥ 1? 
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Examples

• VC dimension of one-level decision trees over real vectors of 
length 2?

• Three

• VC dimension of linear separators through the origin?

• Two

• VC dimension of a hypothesis space with exactly one hypothesis 
in it for binary vectors of length 𝑑𝑑 ≥ 1? 

• Zero
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PAC Bounds with VC Dimension

• VC dimension can be used to construct PAC bounds

𝑀𝑀 ≥
1
𝜖𝜖

4 ln
2
𝛿𝛿

+ 8 ⋅ 𝑉𝑉𝑉𝑉 𝐻𝐻 ln
13
𝜖𝜖

• Then, with probability at least (1 − 𝛿𝛿) every ℎ ∈ 𝐻𝐻 satisfies

𝜖𝜖ℎ ≤ 𝜖𝜖ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +
1
𝑀𝑀

𝑉𝑉𝑉𝑉 𝐻𝐻 ln
2𝑀𝑀

𝑉𝑉𝑉𝑉 𝐻𝐻
+ 1 + ln

4
𝛿𝛿

• These bounds (and the preceding discussion) only work for 
binary classification, but there are generalizations
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PAC Learning

• Given:
• Set of data 𝑋𝑋
• Hypothesis space 𝐻𝐻
• Set of target concepts 𝑉𝑉
• Training instances from unknown probability distribution 

over 𝑋𝑋 of the form (𝑥𝑥, 𝑐𝑐 𝑥𝑥 )

• Goal:
• Learn the target concept 𝑐𝑐 ∈ C
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PAC Learning
• Given:

• A concept class 𝑉𝑉 over 𝑑𝑑 instances from the set 𝑋𝑋
• A learner 𝐿𝐿 with hypothesis space 𝐻𝐻
• Two constants, 𝜖𝜖, 𝛿𝛿 ∈ (0, 1

2
)

• 𝑉𝑉 is said to be PAC learnable by 𝐿𝐿 using 𝐻𝐻 iff for all distributions 
over 𝑋𝑋, learner 𝐿𝐿 by sampling 𝑑𝑑 instances, will with probability 
at least 1 − 𝛿𝛿 outputs a hypothesis ℎ ∈ H such that
• 𝜖𝜖ℎ ≤ 𝜖𝜖
• Running time is polynomial in 1

𝜖𝜖
, 1
𝛿𝛿

,𝑑𝑑, 𝑑𝑑𝑑𝑑𝑠𝑠𝑒𝑒(𝑐𝑐)
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