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Last Time

 PAC learning

e Bias/variance tradeoff

* small hypothesis spaces (not enough flexibility) can have high
bias

* rich hypothesis spaces (too much flexibility) can have high
variance

* Today: more on this phenomenon and how to get around it



Intuition

* Bias
 Measures the accuracy or quality of the algorithm
* High bias means a poor match

* Variance
 Measures the precision or specificity of the match
* High variance means a weak match

* We would like to minimize each of these

 Unfortunately, we can’t do this independently, there is a trade-
off



Bias-Variance Analysis in Regression

* True functionisy = f(x) +¢€

 Where noise, €, is normally distributed with zero mean and
standard deviation o

* Given a set of training examples, (x(l),y(l)), - (x("),y(")), we
fit a hypothesis g(x) = wlx + b to the data to minimize the
squared error

Z['y(” -g(x®)]’



2-D Example

Sample 20 points from f(x) = x + 2sin(1.5x) + N(0,0.2)

fit hypothesis

true function




2-D Example

50 fits (20 examples each)
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Bias-Variance Analysis

* Given a new data point x" with observed value y' = f(x') + ¢,
want to understand the expected prediction error

e Suppose that training samples are drawn independently from a
distribution p(S), want to compute the expected error of the
estimator

E[ (y'-g5s(x))" ]



Probability Reminder

* Variance of a random variable, Z
Var(Z) = E[(Z — E[Z])?]

= E[Z%2 — 2ZE[Z] + E[Z]?]
= E[Z?] — E[Z]?

* Properties of Var(Z)

Var(aZ) = E[a?Z#] — E[aZ]? = a*Var(Z)



Bias-Variance-Noise Decomposition

E|(y' - 95x))” | = Elgs(x)? = 2g5(x")y" + y"]

= E[gs(x")?] — 2E[gs(x]E[y'] + E[y"]

=Var(gs(x") + Elgs(x)]* = 2E[gs(x]f (x")
+Var(y') + f(x')?

= Var(gs(x") + (E[gs(x)] = F(x")° + Var(e)

= Var(gs(x)) + (E[gs(x)] — f(x))" + o



Bias-Variance-Noise Decomposition

E|(y' - 95x))” | = Elgs(x)? = 2g5(x")y" + y"]

= E[gs(x')?] ZE[gS(x’)]@ E[y'z]
The samples S yay(gs(x")) + Elgs 0D — 2E[gs GeN]f (&)

€ are + Var(y") + f(x")?

independent

= Var(gs(x") + (E[gs(x)] = F(x")° + Var(e)

= Var(gs(x)) + (E[gs(x)] — f(x))" + o
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Bias-Variance-Noise Decomposition

E|(y' - 95x))” | = Elgs(x)? = 2g5(x")y" + y"]

= E[gs(x")?] — 2E[gs(x]E[y'] + E[y"]

rollows from Var(gs(x") + E[gs(x")]2D- 2E[gs(x)]f (x")
orimee FVar(y) + f(x')?

= Var(gs(x") + (E[gs(x)] = F(x")° + Var(e)

= Var(gs(x)) + (E[gs(x)] — f(x))" + o
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Bias-Variance-Noise Decomposition

E|(y' - 95x))” | = Elgs(x)? = 2g5(x")y" + y"]

= E[gs(x")?] — 2E[gs(x)]E[y'] + E[y’z] Ely'] = f(x")

= Var(gs(x')) + E[gs(x")]? — ZE[QS(X
+ Var(y) -

= Var(gs(x’)) + (E gs(xN] f(x'))2 + Var(e)

= Var(gs(x)) + (E[gs(x)] — f(x))" + o

12



Bias-Variance-Noise Decomposition

E|(y' - 95x))” | = Elgs(x)? = 2g5(x")y" + y"]

= E[gs(x")?] — 2E[gs(x]IE[y'] + E[y"?]
= Var(gs(x") + E[gs(x)]? — 2E[gs(x")]f (x")
+Var(y") + f(x')?

= Var(gs(x") + (E[gs(x)] = F(x")° + Var(e)

- Var(os) ¢ (Elas )1~ 1)+
' i
Variance Bias Noice
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Bias, Variance, and Noise

* Variance: E[ (gs(x") — E[gs(x")])? ]

* Describes how much gs(x") varies from one training set S to
another

* Bias: E[gs(x")] — f(x')

 Describes the average error of g¢(x")

* Noise: E [(y’ — f(x’))2] = E[€?] = o?

* Describes how much y' varies from f(x")
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2-D Example

50 fits (20 examples each)
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Bias

* Low bias
° ?
* High bias

. ?
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Bias

* Low bias

* Linear regression applied to linear data

* 2nd degree polynomial applied to quadratic data
* High bias

* Constant function applied to non-constant data

* Linear regression applied to highly non-linear data

20



Variance

e |Low variance

. ?

* High variance

. ?
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Variance

Low variance

* Constant function

* Model independent of training data
High variance

* High degree polynomial
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Bias/Variance Tradeoff

* (bias?+variance) is what counts for prediction
 As we saw in PAC learning, we often have

* Low bias = high variance

* Low variance = high bias

* How can we deal with this in practice?
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Reduce Variance Without Increasing Bias

* Averaging reduces variance: let Zy, ..., Zy be i.i.d random

variables
1 1
Var Nz Z; | = NVar(Zi)

l

* |dea: average models to reduce model variance
* The problem
* Only one training set

* Where do multiple models come from?
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Bagging: Bootstrap Aggregation

* Take repeated bootstrap samples from training set D (Breiman,
1994)

* Bootstrap sampling: Given set D containing N training examples,

create D' by drawing N examples at random with replacement
from D

* Bagging:
* Create k bootstrap samples Dy, ..., Dy

* Train distinct classifier on each D;

 Classify new instance by majority vote / average
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Bagging: Bootstrap Aggregation

Original
D Training data

y

Step 1: * * * *
Create Multiple D, D, e b, . D,
Data Sets

P

-
—+

Step 2:
Build Multiple C C C
Classifiers ) .

v v ’

<4

Step 3:
Combine
Classifiers

[image from the slides of David Sontag] °



Bagging

Data 1 2 3 4 5 6 7 8 9 10
BS1 7 1 9 10 7 8 8 4 7 2
BS 2 8 1 3 1 1 9 7 4 10 1
BS3 5 4 8 8 2 5 5 7 38 8

Build a classifier from each bootstrap sample

In each bootstrap sample, each data point has

. 1\N :
probability (1 — N) of not being selected

Expected number of distinct data points in each
sample is then

N - (1 - (1 —%)N) ~N-(1—exp(-=1)) =.632- N
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Bagging

Data 1 2 3 4 5 6 7 8 9 10
BS1 7 1 9 10 7 8 8 4 7 2
BS 2 8 1 3 1 1 9 7 4 10 1
BS3 5 4 8 8 2 5 5 7 38 8

« Build a classifier from each bootstrap sample

* In each bootstrap sample, each data point has

. 1\N :
probability (1 — N) of not being selected

« |f we have 1 TB of data, each bootstrap sample will
be ~ 632GB (this can present computational
challenges)
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Decision Tree Bagging

[image from the slides of David Sontag]



Decision Tree Bagging (100 Bagged Trees)

[image from the slides of David Sontag]



Bagging Results

Without With
Bagging Bagging

Data Set €g en Decrease
waveform 29.1 19.3 34%
heart 4.9 2.8 43%

breast cancer 5.9 3.7 37%
ionosphere 11.2 7.9 29%

diabetes 253 239 6%
glass 304 236 22%
soybean 8.6 6.8 21%

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994
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Random Forests

Step 1:
Create random
vectors

Original
Training data
| = N |
Step 2: : o | :
Use random | | | :

burzcr:'?urlzﬁple | 'l' l’ l’ | l’

Step 3:
Combine
decision trees
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Random Forests

 Ensemble method specifically designed for decision tree
classifiers

* Introduce two sources of randomness: “bagging” and “random
input vectors”

* Bagging method: each tree is grown using a bootstrap
sample of training data

 Random vector method: best split at each node is chosen
from a random sample of m attributes instead of all
attributes
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Random Forest Algorithm

e Forb=1toB
* Draw a bootstrap sample of size N from the data
* Grow a tree Tj using the bootstrap sample as follows
* Choose m attributes uniformly at random from the data
* Choose the best attribute among the m to split on

 Split on the best attribute and recurse (until partitions
have fewer than s,,,;;, number of nodes)

* Prediction for a new data point x
* Regression: %Zb Ty, (x)

* Classification: choose the majority class label among
Ti(x), ..., Tg(x)
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Random Forest Demo

A demo of random forests implemented in JavaScript

36


http://cs.stanford.edu/people/karpathy/svmjs/demo/demoforest.html

When Will Bagging Improve Accuracy?

* Depends on the stability of the base-level classifiers

 Alearneris unstable if a small change to the training set causes
a large change in the output hypothesis

* |f small changes in D cause large changes in the output,
then there will likely be an improvement in performance
with bagging

* Bagging can help unstable procedures, but could hurt the
performance of stable procedures

 Decision trees are unstable

* k-nearest neighbor is stable
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