

Bayesian Methods

Nicholas Ruozzi
University of Texas at Dallas
based on the slides of Vibhav Gogate

Binary Variables

- Coin flipping: heads=1, tails=0 with bias μ

$$
p(X=1 \mid \mu)=\mu
$$

- Bernoulli Distribution

$$
\begin{gathered}
\operatorname{Bern}(x \mid \mu)=\mu^{x} \cdot(1-\mu)^{1-x} \\
E[X]=\mu \\
\operatorname{var}(X)=\mu \cdot(1-\mu)
\end{gathered}
$$

Estimating the Bias of a Coin

- Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads
- How should we estimate the bias?

Estimating the Bias of a Coin

- Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads
- How should we estimate the bias?

- With these coin flips, our estimate of the bias is: ?

Estimating the Bias of a Coin

- Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads
- How should we estimate the bias?

- With these coin flips, our estimate of the bias is: $3 / 5$
- Why is this a good estimate?

Coin Flipping - Binomial Distribution

- $P($ Heads $)=\theta, P($ Tails $)=1-\theta$
- Flips are i.i.d.
- Independent events
- Identically distributed according to Binomial distribution
- Our training data consists of α_{H} heads and α_{T} tails

$$
p(D \mid \theta)=\theta^{\alpha_{H}} \cdot(1-\theta)^{\alpha_{T}}
$$

Maximum Likelihood Estimation (MLE)

- Data: Observed set of α_{H} heads and α_{T} tails
- Hypothesis: Coin flips follow a Bernoulli distribution
- Learning: Find the "best" θ
- MLE: Choose θ to maximize probability of D given θ

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)
\end{aligned}
$$

First Parameter Learning Algorithm

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
\end{aligned}
$$

Set derivative to zero, and solve!

$$
\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=\frac{d}{d \theta}\left[\ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}\right]
$$

First Parameter Learning Algorithm

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
\end{aligned}
$$

Set derivative to zero, and solve!

$$
\begin{aligned}
\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta) & =\frac{d}{d \theta}\left[\ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}\right] \\
& =\frac{d}{d \theta}\left[\alpha_{H} \ln \theta+\alpha_{T} \ln (1-\theta)\right] \\
& =\alpha_{H} \frac{d}{d \theta} \ln \theta+\alpha_{T} \frac{d}{d \theta} \ln (1-\theta) \\
& =\frac{\alpha_{H}}{\theta}-\frac{\alpha_{T}}{1-\theta}=0
\end{aligned}
$$

First Parameter Learning Algorithm

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
\end{aligned}
$$

Set derivative to zero, and solve!

$$
\begin{aligned}
\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta) & =\frac{d}{d \theta}\left[\ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}\right] \\
& =\frac{d}{d \theta}\left[\alpha_{H} \ln \theta+\alpha_{T} \ln (1-\theta)\right] \\
& =\alpha_{H} \frac{d}{d \theta} \ln \theta+\alpha_{T} \frac{d}{d \theta} \ln (1-\theta) \\
& =\frac{\alpha_{H}}{\theta}-\frac{\alpha_{T}}{1-\theta}=0 \quad \widehat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
\end{aligned}
$$

Coin Flip MLE

Priors

- Suppose we have 5 coin flips all of which are heads
- Our estimate of the bias is?

Priors

- Suppose we have 5 coin flips all of which are heads
- MLE would give $\theta_{M L E}=1$
- This event occurs with probability $\frac{1}{2^{5}}=\frac{1}{32}$ for a fair coin
- Are we willing to commit to such a strong conclusion with such little evidence?

Priors

- Priors are a Bayesian mechanism that allow us to take into account "prior" knowledge about our belief in the outcome
- Rather than estimating a single θ, consider a distribution over possible values of θ given the data
- Update our prior after seeing data

Our best guess in the absence of any data

Our estimate after we see some data

Bayesian Learning

Apply Bayes rule:

- Or equivalently: $p(\theta \mid D) \propto p(D \mid \theta) p(\theta)$
- For uniform priors this reduces to the MLE objective

$$
p(\theta) \propto 1 \quad \Rightarrow \quad p(\theta \mid D) \propto p(D \mid \theta)
$$

Picking Priors

- How do we pick a good prior distribution?
- Could represent expert domain knowledge
- Statisticians choose them to make the posterior distribution "nice" (conjugate priors)
- What is a good prior for the bias in the coin flipping problem?

Picking Priors

- How do we pick a good prior distribution?
- Could represent expert domain knowledge
- Statisticians choose them to make the posterior distribution "nice" (conjugate priors)
- What is a good prior for the bias in the coin flipping problem?
- Truncated Gaussian (tough to work with)
- Beta distribution (works well for binary random variables)

Coin Flips with Beta Distribution

Likelihood function:

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

Prior:

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

$$
\begin{aligned}
P(\theta \mid \mathcal{D}) & \propto \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}} \theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1} \\
& =\theta^{\alpha_{H}+\beta_{H}-1}(1-\theta)^{\alpha_{T}+\beta_{T}-1} \\
& =\operatorname{Beta}\left(\alpha_{H}+\beta_{H}, \alpha_{T}+\beta_{T}\right)
\end{aligned}
$$

MAP Estimation

- Choosing θ to maximize the posterior distribution is called maximum a posteriori (MAP) estimation

$$
\theta_{M A P}=\arg \max _{\theta} p(\theta \mid D)
$$

- The only difference between $\theta_{M L E}$ and $\theta_{M A P}$ is that one assumes a uniform prior (MLE) and the other allows an arbitrary prior

Priors

- Suppose we have 5 coin flips all of which are heads
- MLE would give $\theta_{M L E}=1$
- MLE with a $\operatorname{Beta}(2,2)$ prior gives $\theta_{M A P}=\frac{6}{7} \approx .857$
- As we see more data, the effect of the prior diminishes
- $\theta_{M A P}=\frac{\alpha_{H}+\beta_{H}-1}{\alpha_{H}+\beta_{H}+\alpha_{T}+\beta_{T}-2} \approx \frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}$ for large \# of observations

Sample Complexity

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?
- Can use Chernoff bound (again!)
- Suppose Y_{1}, \ldots, Y_{N} are i.i.d. random variables taking values in $\{0,1\}$ such that $E_{p}\left[Y_{i}\right]=y$. For $\epsilon>0$,

$$
p\left(\left|y-\frac{1}{N} \sum_{i} Y_{i}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

Sample Complexity

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?
- Can use Chernoff bound (again!)
- For the coin flipping problem with X_{1}, \ldots, X_{n} iid coin flips and $\epsilon>0$,

$$
p\left(\left|\theta_{\text {true }}-\frac{1}{N} \sum_{i} X_{i}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

Sample Complexity

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?
- Can use Chernoff bound (again!)
- For the coin flipping problem with X_{1}, \ldots, X_{n} iid coin flips and $\epsilon>0$,

$$
p\left(\left|\theta_{\text {true }}-\theta_{M L E}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

Sample Complexity

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?
- Can use Chernoff bound (again!)
- For the coin flipping problem with X_{1}, \ldots, X_{n} iid coin flips and $\epsilon>0$,

$$
\begin{gathered}
p\left(\left|\theta_{\text {true }}-\theta_{M L E}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}} \\
\quad \delta \geq 2 e^{-2 N \epsilon^{2}} \Rightarrow N \geq \frac{1}{2 \epsilon^{2}} \ln \frac{2}{\delta}
\end{gathered}
$$

