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Last Time

• Supervised learning via naive Bayes

• Use MLE to estimate a distribution 𝑝𝑝 𝑥𝑥,𝑦𝑦 = 𝑝𝑝 𝑦𝑦 𝑝𝑝(𝑥𝑥|𝑦𝑦)

• Classify by looking at the conditional distribution, 𝑝𝑝(𝑦𝑦|𝑥𝑥)

• Today:  logistic regression

2



• Learn 𝑝𝑝(𝑌𝑌|𝑋𝑋) directly from the data

• Assume a particular functional form, e.g., a linear classifier 
𝑝𝑝 𝑌𝑌 = 1 𝑥𝑥 = 1 on one side and 0 on the other

• Not differentiable…

• Makes it difficult to learn

• Can’t handle noisy labels

Logistic Regression
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𝑝𝑝(𝑌𝑌 = 1|𝑥𝑥) = 0

𝑝𝑝(𝑌𝑌 = 1|𝑥𝑥) = 1



Logistic Regression

• Learn 𝑝𝑝(𝑦𝑦|𝑥𝑥) directly from the data

• Assume a particular functional 
form

𝑝𝑝 𝑌𝑌 = −1 𝑥𝑥 =
1

1 + exp 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏

𝑝𝑝 𝑌𝑌 = 1 𝑥𝑥 =
exp 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏

1 + exp 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏
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Logistic Function in 𝑚𝑚 Dimensions
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𝑝𝑝 𝑌𝑌 = −1 𝑥𝑥 =
1

1 + exp 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏



Functional Form: Two classes

• Given some 𝑤𝑤 and 𝑏𝑏, we can classify a new point 𝑥𝑥 by assigning 
the label 1 if 𝑝𝑝 𝑌𝑌 = 1 𝑥𝑥 > 𝑝𝑝(𝑌𝑌 = −1|𝑥𝑥) and −1 otherwise

• This leads to a linear classification rule:

• Classify as a 1 if 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 > 0

• Classify as a −1 if 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 < 0
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Learning the Weights

• To learn the weights, we maximize the conditional likelihood

𝑤𝑤∗, 𝑏𝑏∗ = arg max
𝑤𝑤,𝑏𝑏

�
𝑖𝑖=1

𝑁𝑁

𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

• This is the not the same strategy that we used in the case of 
naive Bayes

• For naive Bayes, we maximized the log-likelihood
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Generative vs. Discriminative Classifiers
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Generative classifier:
(e.g., Naïve Bayes)

• Assume some functional form
for 𝑝𝑝(𝑥𝑥|𝑦𝑦),𝑝𝑝(𝑦𝑦)

• Estimate parameters of 𝑝𝑝(𝑥𝑥|𝑦𝑦), 
𝑝𝑝(𝑦𝑦) directly from training data

• Use Bayes rule to calculate 
𝑝𝑝 𝑦𝑦 𝑥𝑥

• This is a generative model
• Indirect computation of 𝑝𝑝(𝑌𝑌|𝑋𝑋)

through Bayes rule

• As a result, can also generate a 
sample of the data,
𝑝𝑝(𝑥𝑥) = ∑𝑦𝑦 𝑝𝑝 𝑦𝑦 𝑝𝑝(𝑥𝑥|𝑦𝑦)

Discriminative classifiers:
(e.g., Logistic Regression)

• Assume some functional 
form for 𝑝𝑝(𝑦𝑦|𝑥𝑥)

• Estimate parameters of 
𝑝𝑝(𝑦𝑦|𝑥𝑥) directly from training 
data

• This is a discriminative model
• Directly learn 𝑝𝑝(𝑦𝑦|𝑥𝑥)
• But cannot obtain a sample of 

the data as 𝑝𝑝(𝑥𝑥) is not 
available

• Useful for discriminating labels



Learning the Weights

ℓ 𝑤𝑤, 𝑏𝑏 = ln�
𝑖𝑖=1

𝑁𝑁

𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁

ln𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 ln𝑝𝑝(𝑌𝑌 = 1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏) + 1 −
𝑦𝑦 𝑖𝑖 + 1

2 ln𝑝𝑝(𝑌𝑌 = −1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 ln
𝑝𝑝 𝑌𝑌 = 1 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏
𝑝𝑝 𝑌𝑌 = −1 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏

+ ln𝑝𝑝(𝑌𝑌 = −1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏 − ln 1 + exp 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏
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Learning the Weights

ℓ 𝑤𝑤, 𝑏𝑏 = ln�
𝑖𝑖=1

𝑁𝑁

𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁

ln𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 ln𝑝𝑝(𝑌𝑌 = 1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏) + 1 −
𝑦𝑦 𝑖𝑖 + 1

2 ln𝑝𝑝(𝑌𝑌 = −1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 ln
𝑝𝑝 𝑌𝑌 = 1 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏
𝑝𝑝 𝑌𝑌 = −1 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏

+ ln𝑝𝑝(𝑌𝑌 = −1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏 − ln 1 + exp 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏
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This is concave in 𝑤𝑤 and 𝑏𝑏: take 
derivatives and solve!



Learning the Weights

ℓ 𝑤𝑤, 𝑏𝑏 = ln�
𝑖𝑖=1

𝑁𝑁

𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁

ln𝑝𝑝(𝑦𝑦 𝑖𝑖 |𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 ln𝑝𝑝(𝑌𝑌 = 1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏) + 1 −
𝑦𝑦 𝑖𝑖 + 1

2 ln𝑝𝑝(𝑌𝑌 = −1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 ln
𝑝𝑝 𝑌𝑌 = 1 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏
𝑝𝑝 𝑌𝑌 = −1 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏

+ ln𝑝𝑝(𝑌𝑌 = −1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏 − ln 1 + exp 𝑤𝑤𝑇𝑇𝑥𝑥 𝑖𝑖 + 𝑏𝑏
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No closed form solution 



Learning the Weights

• Can apply gradient ascent to maximize the conditional likelihood

𝜕𝜕ℓ
𝜕𝜕𝑏𝑏

= �
𝑖𝑖=1

𝑁𝑁
𝑦𝑦 𝑖𝑖 + 1

2
− 𝑝𝑝(𝑌𝑌 = 1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)

𝜕𝜕ℓ
𝜕𝜕𝑤𝑤𝑗𝑗

= �
𝑖𝑖=1

𝑁𝑁

𝑥𝑥𝑗𝑗
(𝑖𝑖) 𝑦𝑦 𝑖𝑖 + 1

2
− 𝑝𝑝(𝑌𝑌 = 1|𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏)
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• Can define priors on the weights to prevent overfitting

• Normal distribution, zero mean, diagonal covariance

𝑝𝑝 𝑤𝑤 = �
𝑗𝑗

1
2𝜋𝜋𝜎𝜎2

exp −
𝑤𝑤𝑗𝑗2

2𝜎𝜎2

• “Pushes” parameters towards zero

• Regularization

• Helps avoid very large weights and overfitting

Priors
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Priors as Regularization

• The log-MAP objective with this Gaussian prior is then

ln�
𝑖𝑖=1

𝑁𝑁

𝑝𝑝 𝑦𝑦 𝑖𝑖 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏 𝑝𝑝 𝑤𝑤 𝑝𝑝(𝑏𝑏) = �
𝑖𝑖

𝑁𝑁

ln𝑝𝑝 𝑦𝑦 𝑖𝑖 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏 −
𝜆𝜆
2

𝑤𝑤 2
2

• Quadratic penalty: drives weights towards zero

• Adds a negative linear term to the gradients

• Different priors can produce different kinds of regularization
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Priors as Regularization

• The log-MAP objective with this Gaussian prior is then

ln�
𝑖𝑖=1

𝑁𝑁

𝑝𝑝 𝑦𝑦 𝑖𝑖 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏 𝑝𝑝 𝑤𝑤 𝑝𝑝(𝑏𝑏) = �
𝑖𝑖

𝑁𝑁

ln𝑝𝑝 𝑦𝑦 𝑖𝑖 𝑥𝑥 𝑖𝑖 ,𝑤𝑤, 𝑏𝑏 −
𝜆𝜆
2

𝑤𝑤 2
2

• Quadratic penalty: drives weights towards zero

• Adds a negative linear term to the gradients

• Different priors can produce different kinds of regularization
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Somtimes called an ℓ2
regularizer



Regularization
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ℓ1 ℓ2



NB vs. LR (on UCI datasets)
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Naïve bayes
Logistic Regression

Sample size 𝑚𝑚

[Ng & Jordan, 2002]



LR in General

• Suppose that 𝑦𝑦 ∈ {1, … ,𝑅𝑅}, i.e., that there are 𝑅𝑅 different class 
labels

• Can define a collection of weights and biases as follows

• Choose a vector of biases and a matrix of weights such that 
for 𝑦𝑦 ≠ 𝑅𝑅

𝑝𝑝 𝑌𝑌 = 𝑘𝑘 𝑥𝑥 =
exp 𝑏𝑏𝑘𝑘 + ∑𝑖𝑖 𝑤𝑤𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖

1 + ∑𝑗𝑗<𝑅𝑅 exp 𝑏𝑏𝑗𝑗 + ∑𝑖𝑖 𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖
and

𝑝𝑝 𝑌𝑌 = 𝑅𝑅 𝑥𝑥 =
1

1 + ∑𝑗𝑗<𝑅𝑅 exp 𝑏𝑏𝑗𝑗 + ∑𝑖𝑖 𝑤𝑤𝑗𝑗𝑖𝑖𝑥𝑥𝑖𝑖
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