

CS 6375

Machine Learning (Ph.D. Qualifying Exam Section)

Nicholas Ruozzi

University of Texas at Dallas

Course Info.

- Instructor: Nicholas Ruozzi
- Office: ECSS 3.409-Blackboard Collaborate
- Office hours: T 1:30-2:30, W 11:00am-12:00pm
- TA: TBD
- Office hours and location: TBD
- Course website: https://www.utdallas.edu/~nicholas.ruozzi/cs6375/2022sp/
- Book: none required
- Piazza (online forum): sign-up link on eLearning

Prerequisites

- CS 5343 (data structures \& algorithms)
- "Mathematical sophistication"
- Basic probability
- Linear algebra: eigenvalues/vectors, matrices, vectors, etc.
- Multivariate calculus: derivatives, gradients, etc.
- l'll review some concepts as we come to them, but you should brush up on areas that you aren't as comfortable

Course Topics

- Dimensionality reduction
- PCA
- Matrix Factorizations
- Learning
- Supervised, unsupervised, active, reinforcement, ...
- SVMs \& kernel methods
- Decision trees, k-NN, logistic regression, ...
- Parameter estimation: Bayesian methods, MAP estimation, maximum likelihood estimation, expectation maximization, ...
- Clustering: k-means \& spectral clustering
- Probabilistic models
- Bayesian networks
- Naïve Bayes
- Neural networks
- Statistical methods
- Boosting, bagging, bootstrapping
- Sampling

Grading

- 5-6 problem sets (50\%)
- See collaboration policy on the web
- Mix of theory and programming (in MATLAB or Python)
- Available and turned in on eLearning
- Approximately one assignment every two weeks
- Midterm Exam (20\%)
- Final Exam (30\%)
- Attendance policy?

What is ML?

What is ML?

"A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience $E . "$

- Tom Mitchell

Basic Machine Learning Paradigm

- Collect data
- Build a model using "training" data
- Use model to make predictions

Supervised Learning

- Input: $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(M)}, y^{(M)}\right)$
- $x^{(m)}$ is the $m^{\text {th }}$ data item and $y^{(m)}$ is the $m^{\text {th }}$ label
- Goal: find a function f such that $f\left(x^{(m)}\right)$ is a "good approximation" to $y^{(m)}$
- Can use it to predict y values for previously unseen x values

Examples of Supervised Learning

- Spam email detection
- Handwritten digit recognition
- Stock market prediction
- More?

Supervised Learning

- Hypothesis space: set of allowable functions $f: X \rightarrow Y$
- Goal: find the "best" element of the hypothesis space
- How do we measure the quality of f ?

Supervised Learning

- Simple linear regression
- Input: pairs of points $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(M)}, y^{(M)}\right)$ with $x^{(m)} \in \mathbb{R}$ and $y^{(m)} \in \mathbb{R}$
- Hypothesis space: set of linear functions $f(x)=a x+b$ with $a, b \in \mathbb{R}$, i.e., want

$$
y^{(m)}=a x^{(m)}+b
$$

- Error metric: squared difference between the predicted value and the actual value, i.e.,

$$
\left(a x^{(m)}+b-y^{(m)}\right)^{2}
$$

Regression

Regression

Hypothesis class: linear functions $f(x)=a x+b$
How do we compute the error of a specific hypothesis?

Linear Regression

- For any data point, x, the learning algorithm predicts $f(x)$
- In typical regression applications, measure the fit using a squared loss function

$$
L(f)=\frac{1}{M} \sum_{m}\left(f\left(x^{(m)}\right)-y^{(m)}\right)^{2}
$$

- Want to minimize the average loss on the training data
- The optimal linear hypothesis is then given by

$$
\min _{a, b} \frac{1}{M} \sum_{m}\left(a x^{(m)}+b-y^{(m)}\right)^{2}
$$

Linear Regression

$$
\min _{a, b} \frac{1}{M} \sum_{m}\left(a x^{(m)}+b-y^{(m)}\right)^{2}
$$

- How do we find the optimal a and b ?

Linear Regression

$$
\min _{a, b} \frac{1}{M} \sum_{m}\left(a x^{(m)}+b-y^{(m)}\right)^{2}
$$

- How do we find the optimal a and b ?
- Solution 1: take derivatives and solve (there is a closed form solution!)
- Solution 2: use gradient descent

Linear Regression

$$
\min _{a, b} \frac{1}{M} \sum_{m}\left(a x^{(m)}+b-y^{(m)}\right)^{2}
$$

- How do we find the optimal a and b ?
- Solution 1: take derivatives and solve (there is a closed form solution!)
- Solution 2: use gradient descent
- This approach is much more likely to be useful for general loss functions

Gradient Descent

Iterative method to minimize a (convex) differentiable function f

- Find a direction along which the function is decreasing and step in that direction

Gradient Descent

Iterative method to minimize a (convex) differentiable function f

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if

$$
\lambda f(x)+(1-\lambda) f(y) \geq f(\lambda x+(1-\lambda) y)
$$

for all $\lambda \in[0,1]$ and all $x, y \in \mathbb{R}^{n}$

Convex Functions

- A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

for all $x, y \in \mathbb{R}^{n}$ and $t \in[0,1]$

Characterizations of Convexity

- A differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex on a convex set C if and only if

$$
f(x) \geq f(y)+\nabla f(y)^{T}(x-y)
$$

for all $x, y \in C$

Characterizations of Convexity

- A differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex on \mathbb{R}^{n} if and only if

$$
f(x) \geq f(y)+\nabla f(y)^{T}(x-y)
$$

for all $x, y \in \mathbb{R}^{n}$

Image: Lane
Vosbury, Seminole State College

Gradient Descent

Iterative method to minimize a (convex) differentiable function f

- Pick an initial point $x^{(0)}$
- Iterate until convergence

$$
x^{(t+1)}=x^{(t)}-\gamma_{t} \nabla f\left(x^{(t)}\right)
$$

where γ_{t} is the $t^{t h}$ step size (sometimes called learning rate)

Gradient Descent

$$
f(x)=x^{2}
$$

Gradient Descent

$$
f(x)=x^{2}
$$

Step size: . 8
$x^{(0)}=-4$
$x^{(1)}=2.4$
$x^{(2)}=-1.44$
$x^{(3)}=.864$
$x^{(4)}=-0.5184$
$x^{(5)}=0.31104$
$-10 \quad-8$
(20

$x^{(30)}=-8.84296 e-07$

Gradient Descent

Step size: . 9

Gradient Descent

Step size: . 2

Gradient Descent

Step size matters!

Gradient Descent

Step size matters!

Gradient Descent

$$
\min _{a, b} \frac{1}{M} \sum_{m}\left(a x^{(m)}+b-y^{(m)}\right)^{2}
$$

- What is the gradient of this function?
- What does a gradient descent iteration look like for this simple regression problem?

Linear Regression

- In higher dimensions, the linear regression problem is essentially the same with $x^{(m)} \in \mathbb{R}^{n}$

$$
\min _{a \in \mathbb{R}^{n}, b} \frac{1}{M} \sum_{m}\left(a^{T} x^{(m)}+b-y^{(m)}\right)^{2}
$$

- Can still use gradient descent to minimize this
- Not much more difficult than the $n=1$ case

Gradient Descent

- Gradient descent converges under certain technical conditions on the function f and the step size γ_{t}
- If f is convex and differentiable, then any fixed point of gradient descent must correspond to a global minimum of f
- For a nonconvex function, may only converge to a local optimum

Regression

- What if we enlarge the hypothesis class?
- Quadratic functions: $a x^{2}+b x+c$
- k-degree polynomials: $a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$

$$
\min _{a_{k}, \ldots, a_{0}} \frac{1}{M} \sum_{m}\left(a_{k}\left(x^{(m)}\right)^{k}+\cdots+a_{1} x^{(m)}+a_{0}-y^{(m)}\right)^{2}
$$

Regression

- What if we enlarge the hypothesis class?
- Quadratic functions: $a x^{2}+b x+c$
- k-degree polynomials: $a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$
- Can we always learn "better" with a larger hypothesis class?

Regression

- What if we enlarge the hypothesis class?
- Quadratic functions: $a x^{2}+b x+c$
- k-degree polynomials: $a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$
- Can we always learn "better" with a larger hypothesis class?

Regression

- Larger hypothesis space typically decreases the cost function, but this does NOT necessarily mean better predictive performance
- This phenomenon is known as overfitting
- Ideally, we would select the simplest hypothesis consistent with the observed data
- In practice, we cannot simply evaluate our learned hypothesis on the training data, we want it to perform well on unseen data (otherwise, we can just memorize the training data!)
- Report the loss on some held out test data (i.e., data not used as part of the training process)

Binary Classification

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function $f: X \rightarrow\{0,1\}$
- As an example:

	x_{1}	x_{2}	x_{3}	y
1	0	0	1	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

How do we pick the hypothesis space?

How do we find the best f in this space?

Binary Classification

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function $f: X \rightarrow\{0,1\}$
- As an example:

	x_{1}	x_{2}	x_{3}	y
1	0	0	1	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

How many functions with three binary inputs and one binary output are there?

Binary Classification

	x_{1}	x_{2}	x_{3}	y
	0	0	0	$?$
1	0	0	1	0
2	0	1	0	1
	0	1	1	$?$
	1	0	0	$?$
	1	0	1	$?$
3	1	1	0	1
4	1	1	1	0

2^{8} possible functions
2^{4} are consistent with the observations

How do we choose the best one?

What if the observations are noisy?

Challenges in ML

- How to choose the right hypothesis space?
- Number of factors influence this decision: difficulty of learning over the chosen space, how expressive the space is,
- How to evaluate the quality of our learned hypothesis?
- Prefer "simpler" hypotheses (to prevent overfitting)
- Want the outcome of learning to generalize to unseen data

