CS 6375
Machine Learning
(Ph.D. Qualifying Exam Section)

Nicholas Ruozzi
University of Texas at Dallas

Slides adapted from David Sontag and Vibhav Gogate
Course Info.

• Instructor: Nicholas Ruozzi
 • Office: ECSS 3.409, Blackboard Collaborate
 • Office hours: T 1:30-2:30, W 11:00am-12:00pm

• TA: TBD
 • Office hours and location: TBD

• Course website: https://www.utdallas.edu/~nicholas.ruozzi/cs6375/2022sp/

• Book: none required

• Piazza (online forum): sign-up link on eLearning
Prerequisites

- CS 5343 (data structures & algorithms)
- “Mathematical sophistication”
 - Basic probability
 - Linear algebra: eigenvalues/vectors, matrices, vectors, etc.
 - Multivariate calculus: derivatives, gradients, etc.
- I’ll review some concepts as we come to them, but you should brush up on areas that you aren’t as comfortable
Course Topics

• Dimensionality reduction
 • PCA
 • Matrix Factorizations

• Learning
 • Supervised, unsupervised, active, reinforcement, ...
 • SVMs & kernel methods
 • Decision trees, k-NN, logistic regression, ...
 • Parameter estimation: Bayesian methods, MAP estimation, maximum likelihood estimation, expectation maximization, ...
 • Clustering: k-means & spectral clustering

• Probabilistic models
 • Bayesian networks
 • Naïve Bayes

• Neural networks

• Statistical methods
 • Boosting, bagging, bootstrapping
 • Sampling
Grading

- 5-6 problem sets (50%)
 - See collaboration policy on the web
 - Mix of theory and programming (in MATLAB or Python)
 - Available and turned in on eLearning
 - Approximately one assignment every two weeks
- Midterm Exam (20%)
- Final Exam (30%)
- Attendance policy?

-subject to change-
What is ML?
What is ML?

“A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.”

- Tom Mitchell
Basic Machine Learning Paradigm

- Collect data
- Build a model using “training” data
- Use model to make predictions
Supervised Learning

• **Input:** \((x^{(1)}, y^{(1)}), \ldots, (x^{(M)}, y^{(M)})\)
 - \(x^{(m)}\) is the \(m^{th}\) data item and \(y^{(m)}\) is the \(m^{th}\) label

• **Goal:** find a function \(f\) such that \(f(x^{(m)})\) is a “good approximation” to \(y^{(m)}\)
 - Can use it to predict \(y\) values for previously unseen \(x\) values
Examples of Supervised Learning

- Spam email detection
- Handwritten digit recognition
- Stock market prediction
- More?
Supervised Learning

• Hypothesis space: set of allowable functions $f: X \rightarrow Y$

• Goal: find the “best” element of the hypothesis space

 • How do we measure the quality of f?
Supervised Learning

• Simple linear regression

 • Input: pairs of points \((x^{(1)}, y^{(1)}), \ldots, (x^{(M)}, y^{(M)})\) with \(x^{(m)} \in \mathbb{R}\) and \(y^{(m)} \in \mathbb{R}\)

 • Hypothesis space: set of linear functions \(f(x) = ax + b\) with \(a, b \in \mathbb{R}\), i.e., want
 \[y^{(m)} = ax^{(m)} + b\]

 • Error metric: squared difference between the predicted value and the actual value, i.e.,
 \[(ax^{(m)} + b - y^{(m)})^2\]
Regression
Regression

Hypothesis class: linear functions $f(x) = ax + b$

How do we compute the error of a specific hypothesis?
Linear Regression

• For any data point, \(x \), the learning algorithm predicts \(f(x) \)

• In typical regression applications, measure the fit using a squared loss function

\[
L(f) = \frac{1}{M} \sum_{m} (f(x^{(m)}) - y^{(m)})^2
\]

• Want to minimize the average loss on the training data

• The optimal linear hypothesis is then given by

\[
\min_{a,b} \frac{1}{M} \sum_{m} (ax^{(m)} + b - y^{(m)})^2
\]
Linear Regression

\[
\min_{a,b} \frac{1}{M} \sum_m \left(ax^{(m)} + b - y^{(m)}\right)^2
\]

• How do we find the optimal \(a\) and \(b\)?
Linear Regression

\[
\min_{a,b} \frac{1}{M} \sum_m (ax^{(m)} + b - y^{(m)})^2
\]

• How do we find the optimal \(a\) and \(b\)?

 • Solution 1: take derivatives and solve
 (there is a closed form solution!)

 • Solution 2: use gradient descent
Linear Regression

\[
\min_{a,b} \frac{1}{M} \sum_m \left(ax^{(m)} + b - y^{(m)} \right)^2
\]

• How do we find the optimal \(a \) and \(b \)?

• Solution 1: take derivatives and solve
 (there is a closed form solution!)

• Solution 2: use gradient descent
 • This approach is much more likely to be useful for general loss functions
Gradient Descent

Iterative method to minimize a (convex) differentiable function f

- Find a direction along which the function is decreasing and step in that direction
Gradient Descent

Iterative method to minimize a (convex) differentiable function f

A function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if

$$\lambda f(x) + (1 - \lambda) f(y) \geq f(\lambda x + (1 - \lambda) y)$$

for all $\lambda \in [0,1]$ and all $x, y \in \mathbb{R}^n$
Convex Functions

- A function \(f: \mathbb{R}^n \to \mathbb{R} \) is **convex** if

\[
 f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y)
\]

for all \(x, y \in \mathbb{R}^n \) and \(t \in [0,1] \)
Characterizations of Convexity

- A differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is convex on a convex set C if and only if
 \[f(x) \geq f(y) + \nabla f(y)^T(x - y) \]
 for all $x, y \in C$
Characterizations of Convexity

- A differentiable function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex on \(\mathbb{R}^n \) if and only if
 \[
 f(x) \geq f(y) + \nabla f(y)^T (x - y)
 \]
 for all \(x, y \in \mathbb{R}^n \)
Gradient Descent

Iterative method to minimize a (convex) differentiable function f

- Pick an initial point $x^{(0)}$
- Iterate until convergence

$$x^{(t+1)} = x^{(t)} - \gamma_t \nabla f(x^{(t)})$$

where γ_t is the t^{th} step size (sometimes called learning rate)
Gradient Descent

\[f(x) = x^2 \]

Step size: .8

\[x^{(0)} = -4 \]
Gradient Descent

\[f(x) = x^2 \]

Step size: 0.8

\[x^{(0)} = -4 \]

\[x^{(1)} = -4 - 0.8 \cdot 2 \cdot (-4) \]
Gradient Descent

\[f(x) = x^2 \]

Step size: .8

\[x^{(0)} = -4 \]
\[x^{(1)} = 2.4 \]
Gradient Descent

\[f(x) = x^2 \]

Step size: \(\cdot 0.8 \)

\[x^{(0)} = -4 \]
\[x^{(1)} = 2.4 \]
\[x^{(2)} = 2.4 - 0.8 \cdot 2 \cdot 2.4 \]
Gradient Descent

\[f(x) = x^2 \]

Step size: \(0.8\)

\[x^{(0)} = -4 \]
\[x^{(1)} = 2.4 \]
\[x^{(2)} = -1.44 \]
Gradient Descent

$f(x) = x^2$

Step size: 0.8

$x^{(0)} = -4$
$x^{(1)} = 2.4$
$x^{(2)} = -1.44$
$x^{(3)} = .864$
$x^{(4)} = -0.5184$
$x^{(5)} = 0.31104$

$x^{(30)} = -8.84296e-07$
Gradient Descent
Gradient Descent

Step size: 0.2
Gradient Descent

Step size matters!
Gradient Descent

Step size matters!
Gradient Descent

\[\min_{a,b} \frac{1}{M} \sum_m (ax^{(m)} + b - y^{(m)})^2 \]

- What is the gradient of this function?
- What does a gradient descent iteration look like for this simple regression problem?
Linear Regression

• In higher dimensions, the linear regression problem is essentially the same with $x^{(m)} \in \mathbb{R}^n$

$$\min_{a \in \mathbb{R}^n, b} \frac{1}{M} \sum_{m} \left(a^T x^{(m)} + b - y^{(m)} \right)^2$$

• Can still use gradient descent to minimize this

 • Not much more difficult than the $n = 1$ case
Gradient Descent

- Gradient descent converges under certain technical conditions on the function f and the step size γ_t
 - If f is convex and differentiable, then any fixed point of gradient descent must correspond to a global minimum of f
 - For a nonconvex function, may only converge to a local optimum
Regression

- What if we enlarge the hypothesis class?
 - Quadratic functions: $ax^2 + bx + c$
 - k-degree polynomials: $a_kx^k + a_{k-1}x^{k-1} + \cdots + a_1x + a_0$

$$\min_{a_k, \ldots, a_0} \frac{1}{M} \sum_m \left(a_k (x^{(m)})^k + \cdots + a_1 x^{(m)} + a_0 - y^{(m)} \right)^2$$
Regression

• What if we enlarge the hypothesis class?

 • Quadratic functions: $a x^2 + bx + c$

 • k-degree polynomials: $a_k x^k + a_{k-1} x^{k-1} + \cdots + a_1 x + a_0$

• Can we always learn “better” with a larger hypothesis class?
Regression

• What if we enlarge the hypothesis class?

 • Quadratic functions: $ax^2 + bx + c$

 • k-degree polynomials: $a_kx^k + a_{k-1}x^{k-1} + \cdots + a_1x + a_0$

• Can we always learn “better” with a larger hypothesis class?
Regression

• Larger hypothesis space typically decreases the cost function, but this does NOT necessarily mean better predictive performance
 • This phenomenon is known as overfitting
 • Ideally, we would select the simplest hypothesis consistent with the observed data

• In practice, we cannot simply evaluate our learned hypothesis on the training data, we want it to perform well on unseen data (otherwise, we can just memorize the training data!)
 • Report the loss on some held out test data (i.e., data not used as part of the training process)
Binary Classification

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function $f: X \rightarrow \{0, 1\}$
- As an example:

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

How do we pick the hypothesis space?

How do we find the best f in this space?
Binary Classification

• Regression operates over a continuous set of outcomes
• Suppose that we want to learn a function \(f: X \rightarrow \{0,1\} \)
• As an example:

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

How many functions with three binary inputs and one binary output are there?
Binary Classification

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2^8 possible functions

2^4 are consistent with the observations

How do we choose the best one?

What if the observations are noisy?
Challenges in ML

- How to choose the right hypothesis space?
 - Number of factors influence this decision: difficulty of learning over the chosen space, how expressive the space is, ...

- How to evaluate the quality of our learned hypothesis?
 - Prefer “simpler” hypotheses (to prevent overfitting)
 - Want the outcome of learning to generalize to unseen data