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Reminders

• Homework 1 is available on eLearning and due in 2 weeks

• Late homework will not be accepted

• Instructions for getting started with the course, e.g., joining 
Piazza, are on eLearning

• Office hours are happening this week

• Prof. (blackboard) T 1:30pm-2:30pm, W 11:00am-12:00pm
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Supervised Learning

• Input: 𝑥𝑥(1),𝑦𝑦(1) , … , (𝑥𝑥(𝑀𝑀),𝑦𝑦(𝑀𝑀))

• 𝑥𝑥(𝑚𝑚) is the 𝑚𝑚𝑡𝑡𝑡 data item and 𝑦𝑦(𝑚𝑚) is the 𝑚𝑚𝑡𝑡𝑡 label

• Goal: find a function 𝑓𝑓 such that 𝑓𝑓 𝑥𝑥(𝑚𝑚) is a “good 
approximation” to 𝑦𝑦(𝑚𝑚)

• Can use it to predict 𝑦𝑦 values for previously unseen 𝑥𝑥 values
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Supervised Learning

• Hypothesis space:  set of allowable functions 𝑓𝑓:𝑋𝑋 → 𝑌𝑌

• Goal:  find the “best” element of the hypothesis space

• How do we measure the quality of 𝑓𝑓?
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Regression

𝑥𝑥

𝑦𝑦

Hypothesis class:  linear functions 𝑓𝑓 𝑥𝑥 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏

How do we measure the quality of the approximation?
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Linear Regression
• In typical regression applications, measure the fit using a 

squared loss function

𝐿𝐿 𝑓𝑓 =
1
𝑀𝑀
�
𝑚𝑚

𝑓𝑓 𝑥𝑥 𝑚𝑚 − 𝑦𝑦 𝑚𝑚 2

• Want to minimize the average loss on the training data

• For 2-D linear regression, the learning problem is then

min
𝑎𝑎,𝑏𝑏

1
𝑀𝑀
�
𝑚𝑚

𝑎𝑎𝑥𝑥(𝑚𝑚) + 𝑏𝑏 − 𝑦𝑦(𝑚𝑚) 2

• For an unseen data point, 𝑥𝑥, the learning algorithm predicts 
𝑓𝑓(𝑥𝑥)
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Supervised Learning

• Select a hypothesis space (elements of the space are 
represented by a collection of parameters)

• Choose a loss function (evaluates quality of the hypothesis as a 
function of its parameters)

• Minimize loss function, e.g., using gradient descent 
(minimization over the parameters)

• Evaluate quality of the learned model using test data – that is, 
data on which the model was not trained
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Binary Classification

• Regression operates over a continuous set of outcomes

• Suppose that we want to learn a function 𝑓𝑓:𝑋𝑋 → {0,1}

• As an example:

How do we pick the hypothesis 
space?

How do we find the best 𝑓𝑓 in this 
space?

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝑥𝑥3 𝑦𝑦
1 0 0 1 0
2 0 1 0 1
3 1 1 0 1
4 1 1 1 0
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Binary Classification

• Regression operates over a continuous set of outcomes

• Suppose that we want to learn a function 𝑓𝑓:𝑋𝑋 → {0,1}

• As an example:

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝑥𝑥3 𝑦𝑦
1 0 0 1 0
2 0 1 0 1
3 1 1 0 1
4 1 1 1 0

How many functions with three 
binary inputs and one binary 
output are there?

9



Binary Classification

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝑥𝑥3 𝑦𝑦
0 0 0 ?

1 0 0 1 0
2 0 1 0 1

0 1 1 ?
1 0 0 ?
1 0 1 ?

3 1 1 0 1
4 1 1 1 0

28 possible functions

24 are consistent with the 
observations

How do we choose the best one?

What if the observations are noisy?
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Challenges in ML

• How to choose the right hypothesis space?

• Number of factors influence this decision:  difficulty of 
learning over the chosen space, how expressive the space is, 
… 

• How to evaluate the quality of our learned hypothesis?

• Prefer “simpler” hypotheses (to prevent overfitting)

• Want the outcome of learning to generalize to unseen data
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Binary Classification

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2 +
+

+ +

+

+

+

+
+

+

+

+_

_

_ _

_

_
_

_ _
_
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Binary Classification

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2

What is a good 
hypothesis space for 

this problem?
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Binary Classification

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2 +
+

+ +

+

+
+

+

+

++ +

_
_

_ _

_

_
_

_ _
_
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Binary Classification

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2 +
+

+ +

+

+
+

+

+

++ +

_
_

_ _

_

_
_

_ _
_
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Linear Separators

• In 𝑛𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0

with 𝑤𝑤 ∈ ℝ𝑛𝑛, 𝑏𝑏 ∈ ℝ

• Hyperplanes divide ℝ𝑛𝑛 into two distinct sets of points (called 
open halfspaces)

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 > 0

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 < 0
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Binary Classification

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2 +
+

+ +

+

+
+

+

+

++ +

_
_

_ _

_

_
_

_ _
_
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The Linearly Separable Case

• Given 𝑥𝑥 1 ,𝑦𝑦(1) , … with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈ {−1, +1}

• Hypothesis space:  separating hyperplanes

𝑓𝑓 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 (𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

• How should we choose the loss function?
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The Linearly Separable Case

• Given 𝑥𝑥 1 ,𝑦𝑦(1) , … with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈ {−1, +1}

• Hypothesis space:  separating hyperplanes

𝑓𝑓 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 (𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

• How should we choose the loss function?

• Count the number of misclassifications

𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = �
𝑚𝑚

𝑦𝑦(𝑚𝑚) − 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛(𝑤𝑤𝑇𝑇𝑥𝑥 𝑚𝑚 + 𝑏𝑏)

• Tough to optimize, gradient contains no information 
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The Linearly Separable Case

• Given 𝑥𝑥 1 ,𝑦𝑦(1) , … with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈ {−1, +1}

• Hypothesis space:  separating hyperplanes

𝑓𝑓 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛 (𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)

• How should we choose the loss function?

• Penalize misclassification linearly by the size of the violation 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = �
𝑚𝑚

max 0,−𝑦𝑦 𝑚𝑚 (𝑤𝑤𝑇𝑇𝑥𝑥 𝑚𝑚 + 𝑏𝑏)

• Modified hinge loss (convex but not differentiable)
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The Perceptron Algorithm

• Try to minimize the perceptron loss using gradient descent

• The perceptron loss isn't differentiable, how can we apply 
gradient descent?

• Need a generalization of what it means to be the gradient of 
a convex function

21



Gradients of Convex Functions

• For a differentiable convex function 𝑠𝑠(𝑥𝑥) its gradients are linear 
underestimators

𝑥𝑥
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𝑠𝑠(𝑥𝑥)



Gradients of Convex Functions

• For a differentiable convex function 𝑠𝑠(𝑥𝑥) its gradients are linear 
underestimators
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Gradients of Convex Functions

• For a differentiable convex function 𝑠𝑠(𝑥𝑥) its gradients are linear 
underestimators: zero gradient corresponds to a global 
optimum
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Subgradients

• For a convex function 𝑠𝑠(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is given 
by any line, 𝑙𝑙, such that 𝑙𝑙 𝑥𝑥0 = 𝑠𝑠(𝑥𝑥0) and 𝑙𝑙 𝑥𝑥 ≤ 𝑠𝑠(𝑥𝑥) for all 
𝑥𝑥, i.e., it is a linear underestimator

𝑥𝑥

𝑠𝑠(𝑥𝑥)

𝑥𝑥0
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Subgradients

• For a convex function 𝑠𝑠(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is given 
by any line, 𝑙𝑙, such that 𝑙𝑙 𝑥𝑥0 = 𝑠𝑠(𝑥𝑥0) and 𝑙𝑙 𝑥𝑥 ≤ 𝑠𝑠(𝑥𝑥) for all 
𝑥𝑥, i.e., it is a linear underestimator

𝑥𝑥

𝑠𝑠(𝑥𝑥)

𝑥𝑥0
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Subgradients

• For a convex function 𝑠𝑠(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is given 
by any line, 𝑙𝑙, such that 𝑙𝑙 𝑥𝑥0 = 𝑠𝑠(𝑥𝑥0) and 𝑙𝑙 𝑥𝑥 ≤ 𝑠𝑠(𝑥𝑥) for all 
𝑥𝑥, i.e., it is a linear underestimator

𝑥𝑥

𝑠𝑠(𝑥𝑥)

𝑥𝑥0
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Subgradients

• For a convex function 𝑠𝑠(𝑥𝑥), a subgradient at a point 𝑥𝑥0 is given 
by any line, 𝑙𝑙, such that 𝑙𝑙 𝑥𝑥0 = 𝑠𝑠(𝑥𝑥0) and 𝑙𝑙 𝑥𝑥 ≤ 𝑠𝑠(𝑥𝑥) for all 
𝑥𝑥, i.e., it is a linear underestimator

𝑥𝑥

𝑠𝑠(𝑥𝑥)

𝑥𝑥0

If 0 is a subgradient
at 𝑥𝑥0, then 𝑥𝑥0 is a 
global minimum
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Subgradients

• If a convex function is differentiable at a point 𝑥𝑥, then it has a 
unique subgradient at the point 𝑥𝑥 given by the gradient

• If a convex function is not differentiable at a point 𝑥𝑥, it can have 
many subgradients

• E.g., the set of subgradients of the convex function |𝑥𝑥| at the 
point 𝑥𝑥 = 0 is given by the set of slopes [−1,1]

• Subgradients only guaranteed to exist for convex functions
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The Perceptron Algorithm

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = �
𝑚𝑚

max 0,−𝑦𝑦 𝑚𝑚 (𝑤𝑤𝑇𝑇𝑥𝑥 𝑚𝑚 + 𝑏𝑏)

• Try to minimize the perceptron loss using (sub)gradient descent
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The Perceptron Algorithm

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = �
𝑚𝑚

max 0,−𝑦𝑦 𝑚𝑚 (𝑤𝑤𝑇𝑇𝑥𝑥 𝑚𝑚 + 𝑏𝑏)

• Try to minimize the perceptron loss using (sub)gradient descent

𝛻𝛻𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = − �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 𝑥𝑥 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

𝛻𝛻𝑏𝑏(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠) = − �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0
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The Perceptron Algorithm

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = �
𝑚𝑚

max 0,−𝑦𝑦 𝑚𝑚 (𝑤𝑤𝑇𝑇𝑥𝑥 𝑚𝑚 + 𝑏𝑏)

• Try to minimize the perceptron loss using (sub)gradient descent

𝛻𝛻𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠 = − �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 𝑥𝑥 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

𝛻𝛻𝑏𝑏(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑛𝑛 𝑙𝑙𝑙𝑙𝑠𝑠𝑠𝑠) = − �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

32

Is equal to 
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𝑚𝑚𝑡𝑡𝑡 data 
point is 
correctly 
classified 
and one 
otherwise



The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient descent

𝑤𝑤(𝑡𝑡+1) = 𝑤𝑤(𝑡𝑡) + 𝛾𝛾𝑡𝑡 �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 𝑥𝑥 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

𝑏𝑏(𝑡𝑡+1) = 𝑏𝑏(𝑡𝑡) + 𝛾𝛾𝑡𝑡 �
𝑚𝑚=1

𝑀𝑀

𝑦𝑦 𝑚𝑚 ⋅ 1−𝑦𝑦(𝑚𝑚)𝑓𝑓𝑤𝑤,𝑏𝑏 𝑥𝑥(𝑚𝑚) ≥0

• With step size 𝛾𝛾𝑡𝑡 (also called the learning rate)
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Subgradient Descent

34

Fixed Step Size: .9

For convergence 
of subgradient
methods, a 
diminishing step 
size, e.g., 𝛾𝛾𝑡𝑡 =
1
1+𝑡𝑡

is required



Subgradient Descent

35

Diminishing Step Size

For convergence 
of subgradient
methods, a 
diminishing step 
size, e.g., 𝛾𝛾𝑡𝑡 =
1
1+𝑡𝑡

is required



Stochastic Gradient Descent

• Stochastic (sub)gradient descent used to make training practical

• Approximate the gradient of a sum by sampling a few indices (as 
few as one) uniformly at random and averaging 

𝛻𝛻𝑥𝑥 �
𝑚𝑚=1

𝑀𝑀

𝑠𝑠𝑚𝑚(𝑥𝑥) ≈
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝛻𝛻𝑥𝑥𝑠𝑠𝑚𝑚𝑘𝑘(𝑥𝑥)

here, each 𝑚𝑚𝑘𝑘 is sampled uniformly at random from {1, … ,𝑀𝑀}

• Stochastic gradient descent converges to the global optimum 
under certain assumptions on the step size
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Stochastic Gradient Descent

• Setting 𝐾𝐾 = 1, we pick a random observation 𝑚𝑚 and perform 
the following update 

if the 𝒎𝒎𝒕𝒕𝒕𝒕 data point is misclassified:

𝑤𝑤(𝑡𝑡+1) = 𝑤𝑤(𝑡𝑡) + 𝛾𝛾𝑡𝑡𝑦𝑦(𝑚𝑚)𝑥𝑥(𝑚𝑚)

𝑏𝑏(𝑡𝑡+1) = 𝑏𝑏(𝑡𝑡) + 𝛾𝛾𝑡𝑡𝑦𝑦(𝑚𝑚)

if the 𝒎𝒎𝒕𝒕𝒕𝒕 data point is correctly classified:
𝑤𝑤(𝑡𝑡+1) = 𝑤𝑤(𝑡𝑡)

𝑏𝑏(𝑡𝑡+1) = 𝑏𝑏(𝑡𝑡)

• Perceptron algorithm sometimes specified with 𝛾𝛾𝑡𝑡 = 1 for all 𝑝𝑝
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Applications of Perceptron

• Spam email classification

• Represent emails as vectors of counts of certain words (e.g., 
sir, madam, Nigerian, prince, money, etc.)

• Apply the perceptron algorithm to the resulting vectors

• To predict the label of an unseen email

• Construct its vector representation, 𝑥𝑥′

• Check whether or not 𝑤𝑤𝑇𝑇𝑥𝑥′ + 𝑏𝑏 is positive or negative
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Perceptron Learning Drawbacks
• No convergence guarantees if the observations are not linearly 

separable

• Can overfit

• There can be a number of perfect classifiers, but the 
perceptron algorithm doesn’t have any mechanism for 
choosing between them
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What If the Data Isn‘t Separable?

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2
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What is a good 
hypothesis space for 

this problem?
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What If the Data Isn‘t Separable?

• Input 𝑥𝑥 1 ,𝑦𝑦(1) , … , (𝑥𝑥 𝑀𝑀 ,𝑦𝑦(𝑀𝑀)) with 𝑥𝑥(𝑚𝑚)∈ ℝ𝑛𝑛 and 𝑦𝑦(𝑚𝑚) ∈
{−1, +1}

• We can think of the observations as points in ℝ𝑛𝑛 with an 
associated sign (either +/- corresponding to 0/1)

• An example with 𝑛𝑛 = 2
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Adding Features

• Perceptron algorithm only works for linearly separable data

+
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Can add features to make the data 
linearly separable in a higher 

dimensional space!

Essentially the same as higher order 
polynomials for linear regression!
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Adding Features
• The idea, choose a feature map 𝜙𝜙:ℝ𝑛𝑛 → ℝ𝑘𝑘

• Given the observations 𝑥𝑥(1), … , 𝑥𝑥(𝑀𝑀), construct feature vectors 
𝜙𝜙 𝑥𝑥 1 , … ,𝜙𝜙(𝑥𝑥(𝑀𝑀))

• Use 𝜙𝜙 𝑥𝑥(1) , … ,𝜙𝜙 𝑥𝑥(𝑀𝑀) instead of 𝑥𝑥(1), … , 𝑥𝑥(𝑀𝑀) in the learning 
algorithm

• Choose 𝜙𝜙 so that 𝜙𝜙 𝑥𝑥(1) , … ,𝜙𝜙 𝑥𝑥(𝑀𝑀) are linearly separable in ℝ𝑘𝑘

• Learn linear separators of the form 𝑤𝑤𝑇𝑇𝜙𝜙 𝑥𝑥 (instead of 𝑤𝑤𝑇𝑇𝑥𝑥)

• Warning: more expressive features can lead to overfitting!
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Adding Features:  Examples

• 𝜙𝜙
𝑥𝑥1
𝑥𝑥2 =

𝑥𝑥1
𝑥𝑥2

• This is just the input data, without modification

• 𝜙𝜙
𝑥𝑥1
𝑥𝑥2 =

1
𝑥𝑥1
𝑥𝑥2
𝑥𝑥12

𝑥𝑥22

• Corresponds to a second degree polynomial separator, or 
equivalently, elliptical separators in the original space
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Adding Features

𝑥𝑥1

𝑥𝑥2

𝑥𝑥1 − 1 2 + 𝑥𝑥2 − 1 2 − 1 ≤ 0
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Adding Features

𝑥𝑥1

𝑥𝑥2

1𝑥𝑥12 + 1𝑥𝑥22 − 2𝑥𝑥1 − 2𝑥𝑥2 − 2 ≤ 0
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Support Vector Machines
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• How can we decide between two perfect classifiers?

• What is the practical difference between these two solutions?
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