

Binary Classification / Perceptron

Nicholas Ruozzi University of Texas at Dallas

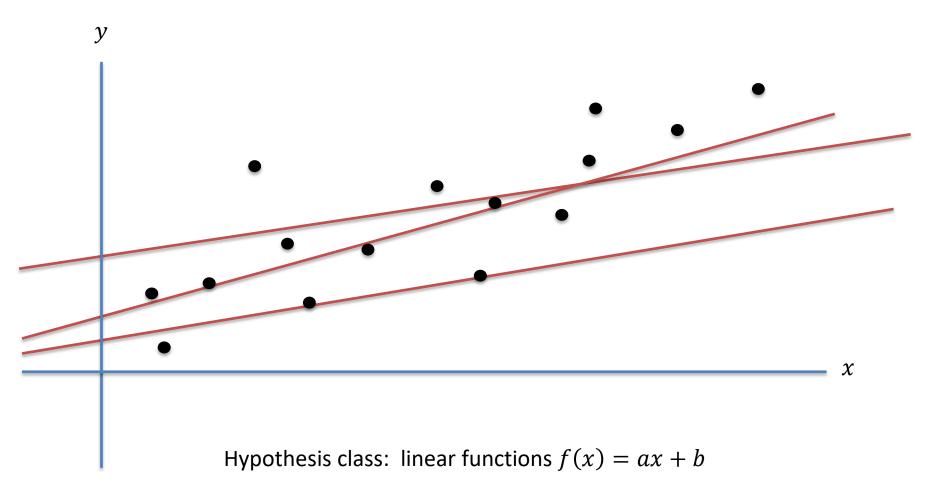
Slides adapted from David Sontag and Vibhav Gogate

- Homework 1 is available on eLearning and due in 2 weeks
 - Late homework will not be accepted
- Instructions for getting started with the course, e.g., joining Piazza, are on eLearning
- Office hours are happening this week
 - Prof. (blackboard) T 1:30pm-2:30pm, W 11:00am-12:00pm

- Input: $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$
 - $x^{(m)}$ is the m^{th} data item and $y^{(m)}$ is the m^{th} label
- **Goal:** find a function f such that $f(x^{(m)})$ is a "good approximation" to $y^{(m)}$
 - Can use it to predict *y* values for previously unseen *x* values

- Hypothesis space: set of allowable functions $f: X \to Y$
- Goal: find the "best" element of the hypothesis space
 - How do we measure the quality of *f*?

Regression



How do we measure the quality of the approximation?

Linear Regression

• In typical regression applications, measure the fit using a squared loss function

$$L(f) = \frac{1}{M} \sum_{m} (f(x^{(m)}) - y^{(m)})^{2}$$

- Want to minimize the average loss on the training data
- For 2-D linear regression, the learning problem is then

$$\min_{a,b} \frac{1}{M} \sum_{m} \left(ax^{(m)} + b - y^{(m)} \right)^2$$

For an unseen data point, x, the learning algorithm predicts
 f(x)

- Select a hypothesis space (elements of the space are represented by a collection of parameters)
- Choose a loss function (evaluates quality of the hypothesis as a function of its parameters)
- Minimize loss function, e.g., using gradient descent (minimization over the parameters)
- Evaluate quality of the learned model using test data that is, data on which the model was not trained

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function $f: X \to \{0,1\}$
- As an example:

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	у
1	0	0	1	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

How do we pick the hypothesis space?

How do we find the best *f* in this space?

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function $f: X \rightarrow \{0,1\}$
- As an example:

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	у
1	0	0	1	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

How many functions with three binary inputs and one binary output are there?

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	у
	0	0	0	?
1	0	0	1	0
2	0	1	0	1
	0	1	1	?
	1	0	0	?
	1	0	1	?
3	1	1	0	1
4	1	1	1	0

 2^8 possible functions

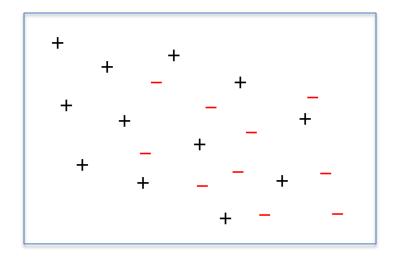
2⁴ are consistent with the observations

How do we choose the best one?

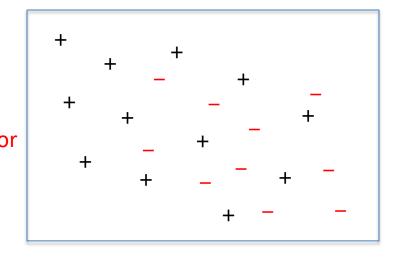
What if the observations are noisy?

- How to choose the right hypothesis space?
 - Number of factors influence this decision: difficulty of learning over the chosen space, how expressive the space is,
 ...
- How to evaluate the quality of our learned hypothesis?
 - Prefer "simpler" hypotheses (to prevent overfitting)
 - Want the outcome of learning to generalize to unseen data

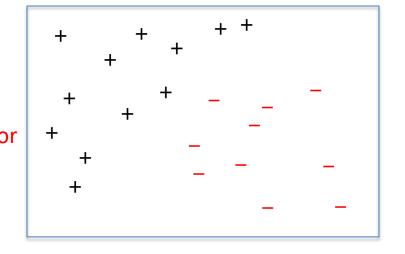
- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n = 2



- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n = 2
 What is a good hypothesis space for this problem?

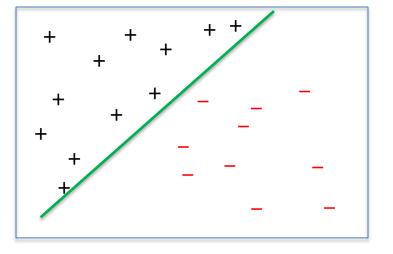


- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n = 2
 What is a good hypothesis space for this problem?



- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n = 2

In this case, we say that the observations are linearly separable



• In *n* dimensions, a hyperplane is a solution to the equation

$$w^T x + b = 0$$

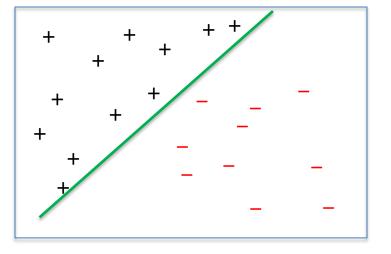
with $w \in \mathbb{R}^n$, $b \in \mathbb{R}$

• Hyperplanes divide \mathbb{R}^n into two distinct sets of points (called open halfspaces)

$$w^T x + b > 0$$
$$w^T x + b < 0$$

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n = 2

In this case, we say that the observations are linearly separable



The Linearly Separable Case

- Given $(x^{(1)}, y^{(1)})$, ... with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

• How should we choose the loss function?

The Linearly Separable Case

- Given $(x^{(1)}, y^{(1)})$, ... with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

- How should we choose the loss function?
 - Count the number of misclassifications

$$loss = \sum_{m} \left| y^{(m)} - sign(w^{T}x^{(m)} + b) \right|$$

• Tough to optimize, gradient contains no information

The Linearly Separable Case

- Given $(x^{(1)}, y^{(1)})$, ... with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- Hypothesis space: separating hyperplanes

$$f(x) = sign\left(w^T x + b\right)$$

- How should we choose the loss function?
 - Penalize misclassification linearly by the size of the violation

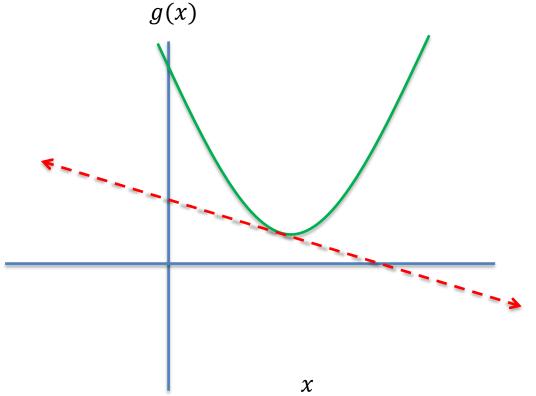
perceptron loss =
$$\sum_{m} \max\{0, -y^{(m)}(w^{T}x^{(m)} + b)\}$$

• Modified hinge loss (convex but not differentiable)

- Try to minimize the perceptron loss using gradient descent
 - The perceptron loss isn't differentiable, how can we apply gradient descent?
 - Need a generalization of what it means to be the gradient of a convex function

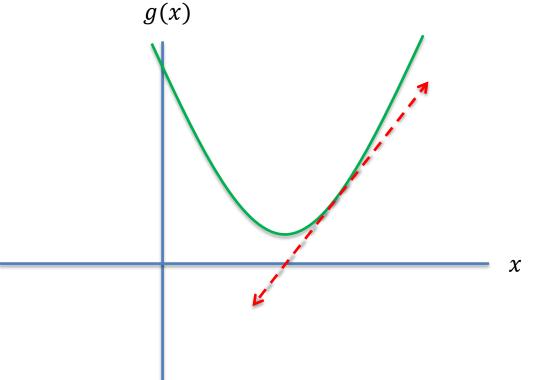
Gradients of Convex Functions

- For a differentiable convex function g(x) its gradients are linear underestimators



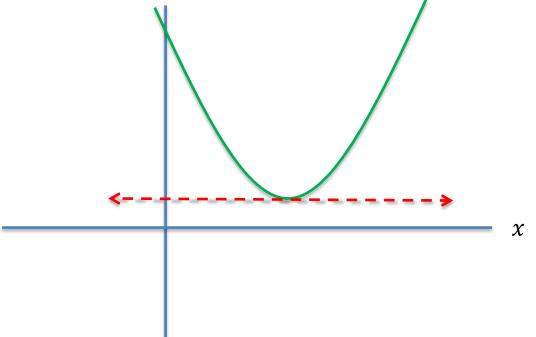
Gradients of Convex Functions

- For a differentiable convex function g(x) its gradients are linear underestimators

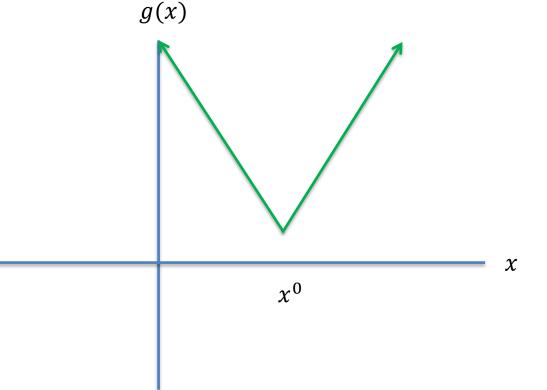


Gradients of Convex Functions

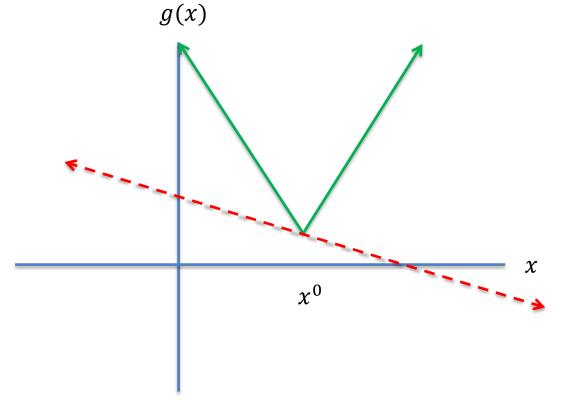
- For a differentiable convex function g(x) its gradients are linear underestimators: zero gradient corresponds to a global optimum



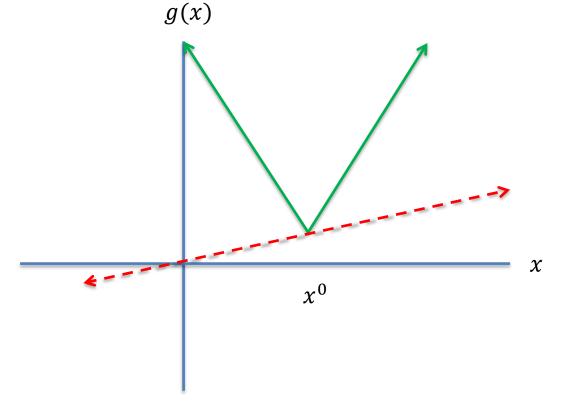
• For a convex function g(x), a subgradient at a point x^0 is given by any line, l, such that $l(x^0) = g(x^0)$ and $l(x) \le g(x)$ for all x, i.e., it is a linear underestimator



• For a convex function g(x), a subgradient at a point x^0 is given by any line, l, such that $l(x^0) = g(x^0)$ and $l(x) \le g(x)$ for all x, i.e., it is a linear underestimator

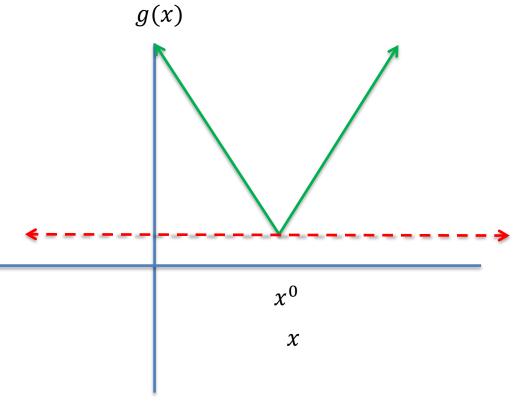


• For a convex function g(x), a subgradient at a point x^0 is given by any line, l, such that $l(x^0) = g(x^0)$ and $l(x) \le g(x)$ for all x, i.e., it is a linear underestimator



• For a convex function g(x), a subgradient at a point x^0 is given by any line, l, such that $l(x^0) = g(x^0)$ and $l(x) \le g(x)$ for all x, i.e., it is a linear underestimator

If $\vec{0}$ is a subgradient at x^0 , then x^0 is a global minimum



- If a convex function is differentiable at a point x, then it has a unique subgradient at the point x given by the gradient
- If a convex function is not differentiable at a point x, it can have many subgradients
 - E.g., the set of subgradients of the convex function |x| at the point x = 0 is given by the set of slopes [-1,1]
- Subgradients only guaranteed to exist for convex functions

perceptron loss =
$$\sum_{m} \max\{0, -y^{(m)}(w^{T}x^{(m)} + b)\}$$

• Try to minimize the perceptron loss using (sub)gradient descent

perceptron loss =
$$\sum_{m} \max\{0, -y^{(m)}(w^{T}x^{(m)} + b)\}$$

• Try to minimize the perceptron loss using (sub)gradient descent

$$\nabla_{w}(perceptron\ loss) = -\sum_{m=1}^{M} \left(y^{(m)} x^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

$$\nabla_b(perceptron\ loss) = -\sum_{m=1}^M \left(y^{(m)} \cdot 1_{-y^{(m)}f_{w,b}(x^{(m)}) \ge 0} \right)$$

perceptron loss =
$$\sum_{m} \max\{0, -y^{(m)}(w^{T}x^{(m)} + b)\}$$

• Try to minimize the perceptron loss using (sub)gradient descent

$$\nabla_{w}(perceptron \ loss) = -\sum_{m=1}^{M} \left(y^{(m)} x^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$
 Is equal to zero if the m^{th} data point is correctly classified and one otherwise

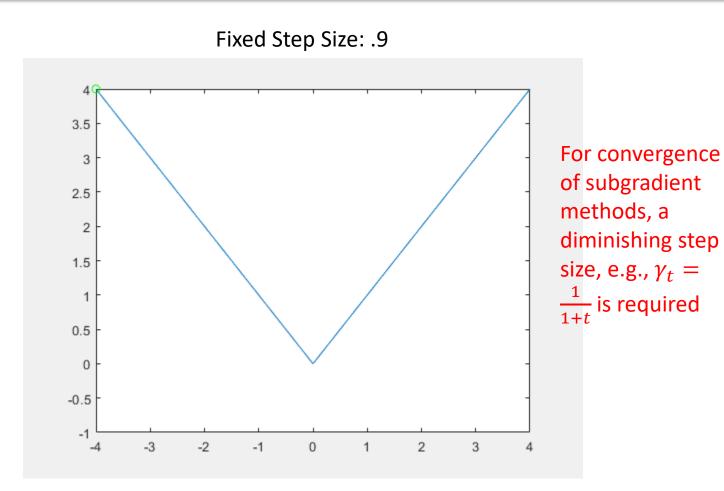
- Try to minimize the perceptron loss using (sub)gradient descent

$$w^{(t+1)} = w^{(t)} + \gamma_t \sum_{m=1}^{M} \left(y^{(m)} x^{(m)} \cdot \mathbf{1}_{-y^{(m)} f_{w,b}}(x^{(m)}) \ge 0 \right)$$

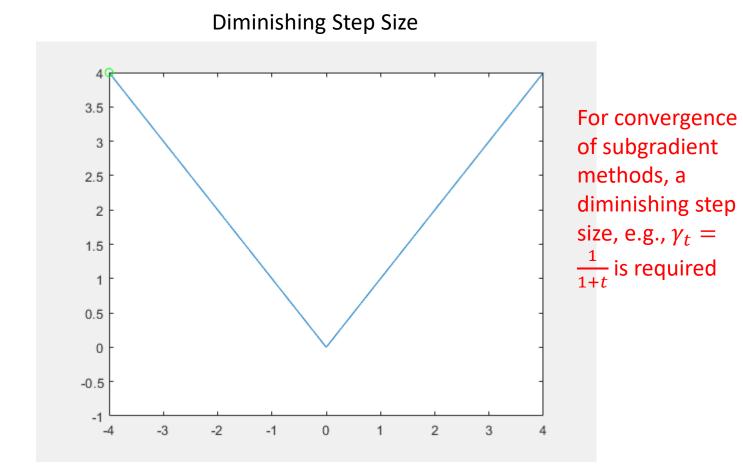
$$b^{(t+1)} = b^{(t)} + \gamma_t \sum_{m=1}^{M} \left(y^{(m)} \cdot 1_{-y^{(m)} f_{w,b}(x^{(m)}) \ge 0} \right)$$

• With step size γ_t (also called the learning rate)

Subgradient Descent



Subgradient Descent



Stochastic Gradient Descent

- Stochastic (sub)gradient descent used to make training practical
- Approximate the gradient of a sum by sampling a few indices (as few as one) uniformly at random and averaging

$$\nabla_{x}\left[\sum_{m=1}^{M}g_{m}(x)\right] \approx \frac{1}{K}\sum_{k=1}^{K}\nabla_{x}g_{m_{k}}(x)$$

here, each m_k is sampled uniformly at random from $\{1, ..., M\}$

• Stochastic gradient descent converges to the global optimum under certain assumptions on the step size

Stochastic Gradient Descent

 Setting K = 1, we pick a random observation m and perform the following update

if the m^{th} data point is misclassified:

$$w^{(t+1)} = w^{(t)} + \gamma_t y^{(m)} x^{(m)}$$
$$b^{(t+1)} = b^{(t)} + \gamma_t y^{(m)}$$

if the m^{th} data point is correctly classified: $w^{(t+1)} = w^{(t)}$ $b^{(t+1)} = b^{(t)}$

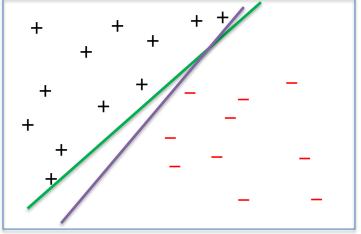
• Perceptron algorithm sometimes specified with $\gamma_t = 1$ for all t

Applications of Perceptron

- Spam email classification
 - Represent emails as vectors of counts of certain words (e.g., sir, madam, Nigerian, prince, money, etc.)
 - Apply the perceptron algorithm to the resulting vectors
 - To predict the label of an unseen email
 - Construct its vector representation, x'
 - Check whether or not $w^T x' + b$ is positive or negative

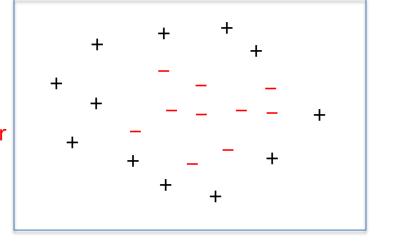
Perceptron Learning Drawbacks

- No convergence guarantees if the observations are not linearly separable
- Can overfit
 - There can be a number of perfect classifiers, but the perceptron algorithm doesn't have any mechanism for choosing between them



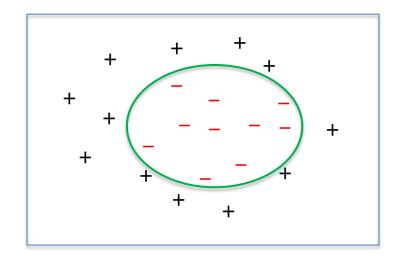
What If the Data Isn't Separable?

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n = 2
 What is a good hypothesis space for this problem?



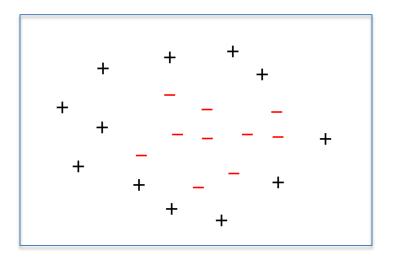
What If the Data Isn't Separable?

- Input $(x^{(1)}, y^{(1)}), \dots, (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^n$ and $y^{(m)} \in \{-1, +1\}$
- We can think of the observations as points in \mathbb{R}^n with an associated sign (either +/- corresponding to 0/1)
- An example with n = 2



Adding Features

• Perceptron algorithm only works for linearly separable data



Can add features to make the data linearly separable in a higher dimensional space!

Essentially the same as higher order polynomials for linear regression!

Adding Features

- The idea, choose a feature map $\phi \colon \mathbb{R}^n \to \mathbb{R}^k$
 - Given the observations $x^{(1)}, \dots, x^{(M)}$, construct feature vectors $\phi(x^{(1)}), \dots, \phi(x^{(M)})$
 - Use $\phi(x^{(1)}), \dots, \phi(x^{(M)})$ instead of $x^{(1)}, \dots, x^{(M)}$ in the learning algorithm
 - Choose ϕ so that $\phi(x^{(1)}), ..., \phi(x^{(M)})$ are linearly separable in \mathbb{R}^k
 - Learn linear separators of the form $w^T \phi(x)$ (instead of $w^T x$)
- Warning: more expressive features can lead to overfitting!

Adding Features: Examples

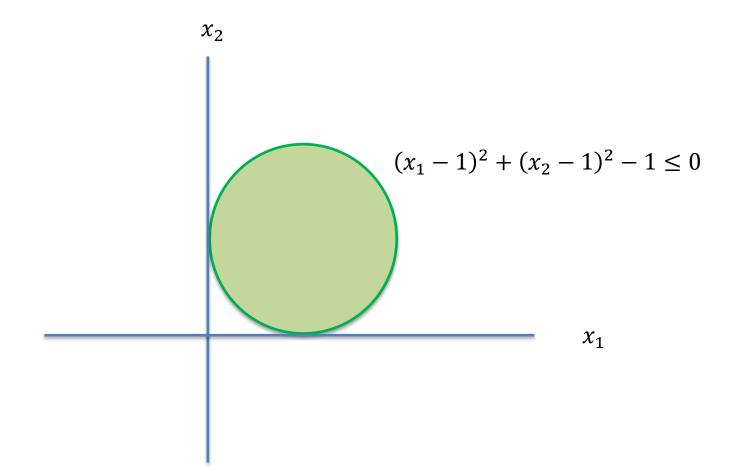
•
$$\phi\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_1\\x_2\end{bmatrix}$$

• This is just the input data, without modification

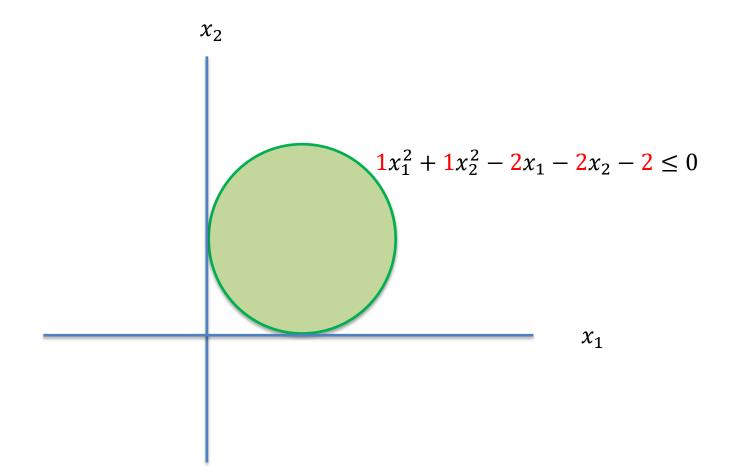
•
$$\phi\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}1\\x_1\\x_2\\x_2\\x_1^2\\x_1^2\\x_2^2\end{bmatrix}$$

• Corresponds to a second degree polynomial separator, or equivalently, elliptical separators in the original space

Adding Features

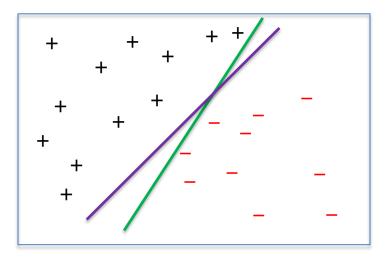


Adding Features



Support Vector Machines

• How can we decide between two perfect classifiers?



• What is the practical difference between these two solutions?