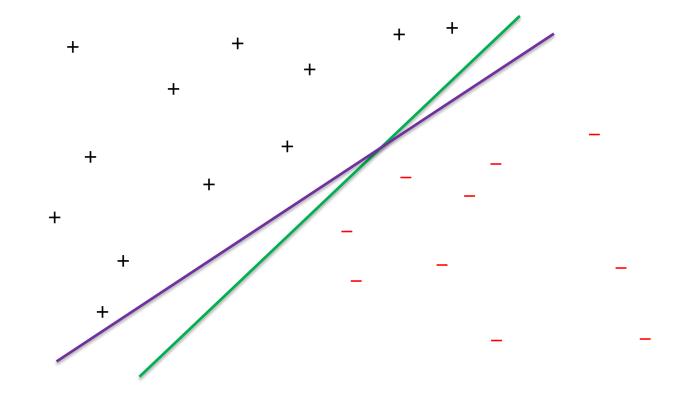


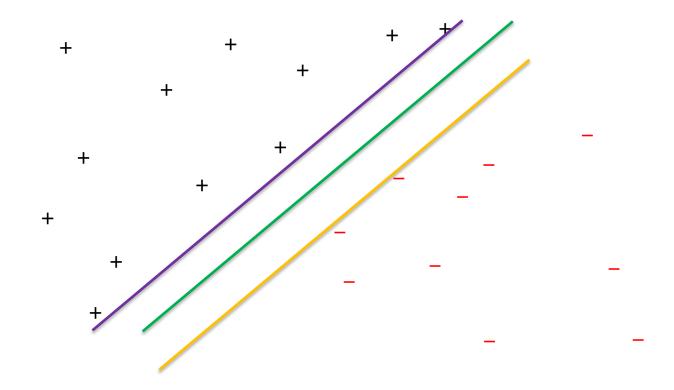
Nicholas Ruozzi University of Texas at Dallas

Slides adapted from David Sontag and Vibhav Gogate

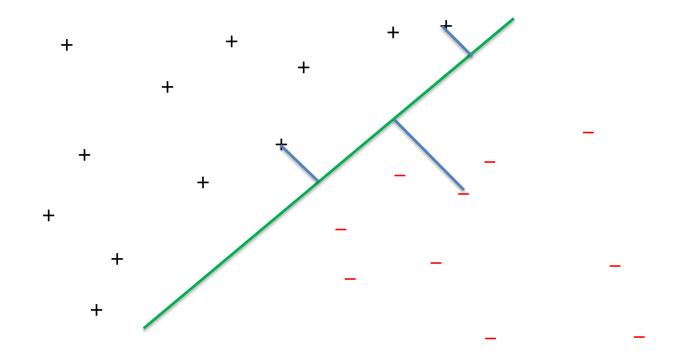
• How can we decide between perfect classifiers?



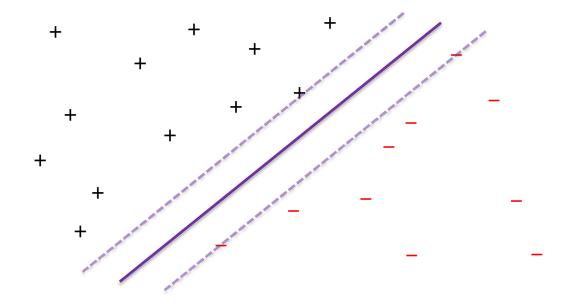
• How can we decide between perfect classifiers?



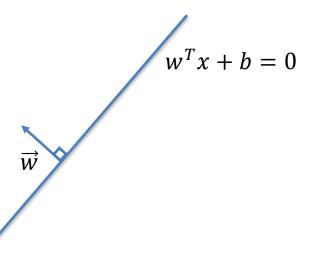
- Define the margin to be the distance of the closest data point to the classifier



• Support vector machines (SVMs)



- Choose the classifier with the largest margin
 - Has good practical and theoretical performance

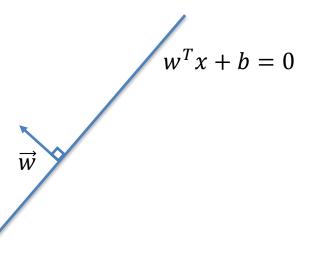


• In *n* dimensions, a hyperplane is a solution to the equation

$$w^T x + b = 0$$

with $w \in \mathbb{R}^n$, $b \in \mathbb{R}$

• The vector w is sometimes called the normal vector of the hyperplane



• In *n* dimensions, a hyperplane is a solution to the equation

$$w^T x + b = 0$$

• Note that this equation is scale invariant for any scalar *c*

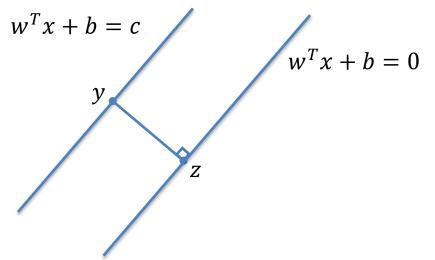
$$c \cdot (w^T x + b) = 0$$



- The distance between a point y and a hyperplane $w^T + b = 0$ is the length of the segment perpendicular to the line to the point y
- The vector from *y* to *z* is given by

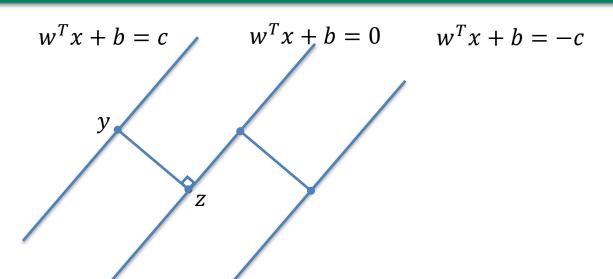
$$y - z = ||y - z|| \frac{w}{||w||}$$

Scale Invariance



- By scale invariance, we can assume that c = 1
- The maximum margin is always attained by choosing $w^T x + b = 0$ so that it is equidistant from the closest data point classified as +1 and the closest data point classified as -1

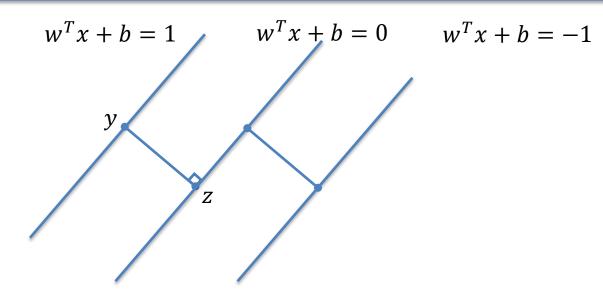
Scale Invariance



• We want to maximize the margin subject to the constraints that

$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$

• But how do we compute the size of the margin?



Putting it all together

$$y - z = ||y - z|| \frac{w}{||w||}$$

and

$$w^T y + b = 1$$
$$w^T z + b = 0$$

$$w^T(y-z)=1$$

and

$$w^{T}(y - z) = ||y - z|| ||w||$$

which gives

$$||y - z|| = 1/||w||$$

• This analysis yields the following optimization problem $\max_{w,b} \frac{1}{\|w\|}$

such that

$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$
, for all i

• Or, equivalently,

 $\min_{w,b} \|w\|^2$

such that

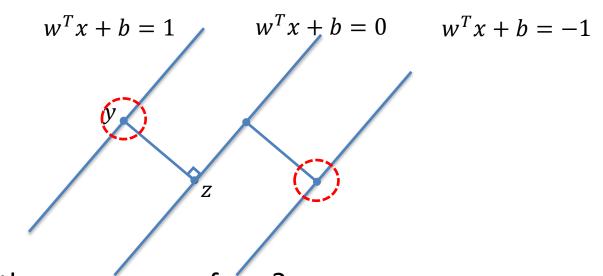
$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$
, for all i

 $\min_{w,b} \|w\|^2$

such that

$$y^{(i)}(w^T x^{(i)} + b) \ge 1$$
, for all i

- This is a standard quadratic programming problem
 - Falls into the class of convex optimization problems
 - Can be solved with many specialized optimization tools (e.g., quadprog() in MATLAB)



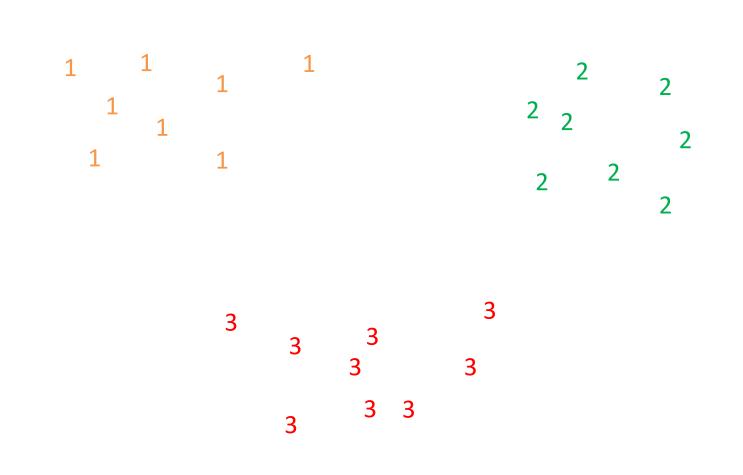
- Where does the name come from?
 - The set of all data points such that y⁽ⁱ⁾(w^Tx⁽ⁱ⁾ + b) = 1 are called support vectors
 - The SVM classifier is completely determined by the support vectors (can delete the rest and get the same answer)

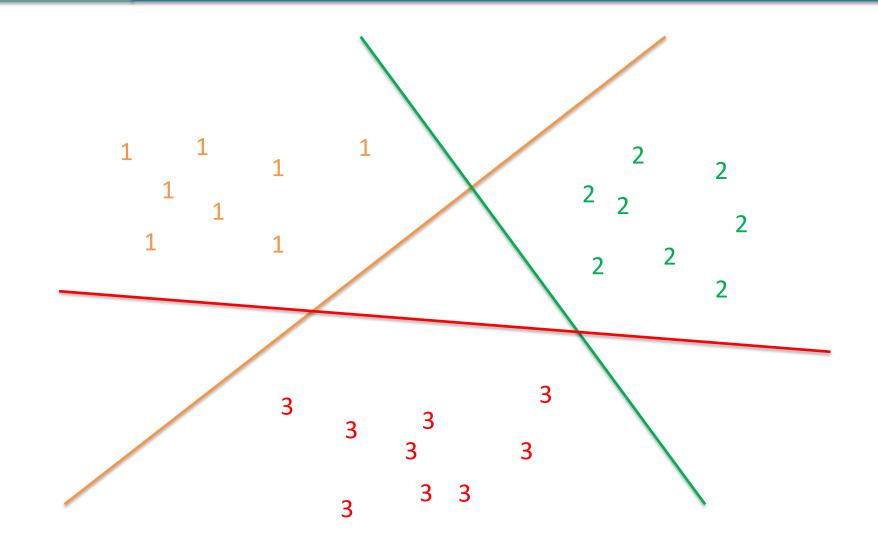
• What if the data isn't linearly separable?

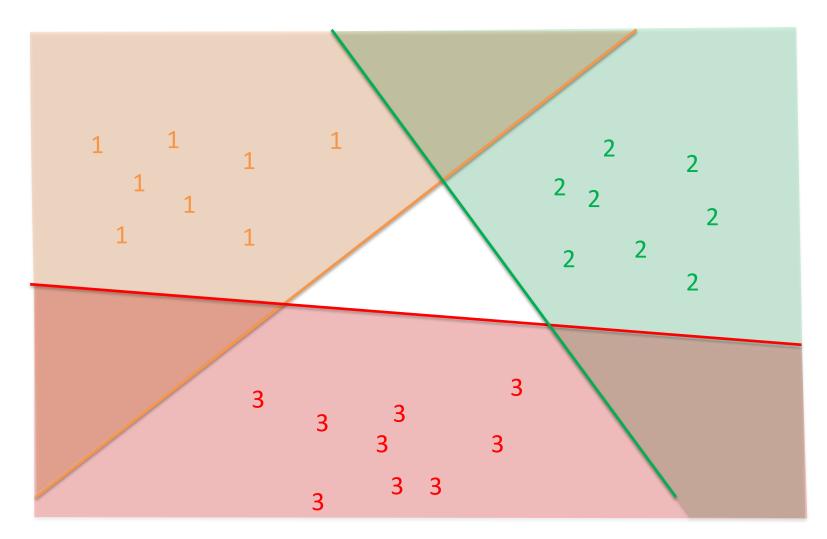
 What if we want to do more than just binary classification (i.e., if y ∈ {1,2,3})?

- What if the data isn't linearly separable?
 - Use feature vectors
 - Relax the constraints (coming soon)
- What if we want to do more than just binary classification (i.e., if y ∈ {1,2,3})?

Multiclass Classification





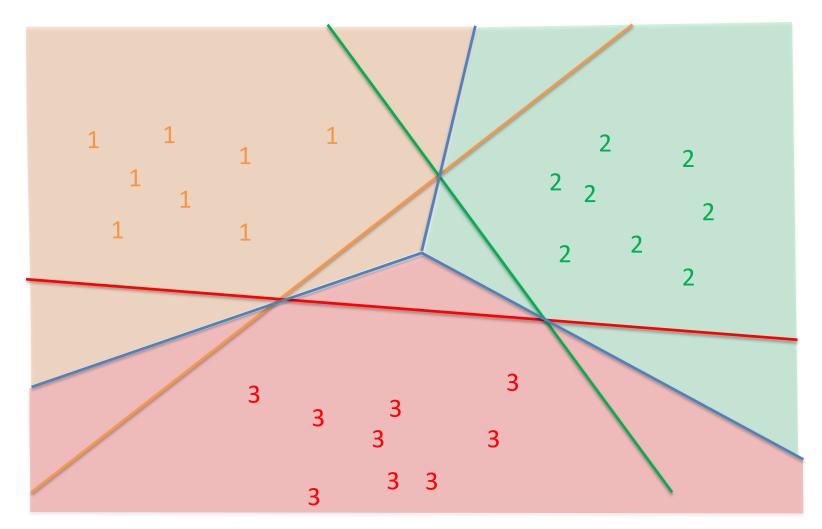


Regions correctly classified by exactly one classifier

- Compute a classifier for each label versus the remaining labels (i.e., and SVM with the selected label as plus and the remaining labels changed to minuses)
- Let $f^k(x) = w^{(k)^T}x + b^{(k)}$ be the classifier for the k^{th} label
- For a new datapoint *x*, classify it as

 $k' \in \operatorname{argmax}_k f^k(x)$

- Drawbacks:
 - If there are *L* possible labels, requires learning *L* classifiers over the entire data set



Regions in which points are classified by highest value of $w^T x + b$

- Alternative strategy is to construct a classifier for all possible pairs of labels
- Given a new data point, can classify it by majority vote (i.e., find the most common label among all of the possible classifiers)
- If there are L labels, requires computing $\binom{L}{2}$ different classifiers each of which uses only a fraction of the data
- Drawbacks: Can overfit if some pairs of labels do not have a significant amount of data (plus it can be computationally expensive)

One-Versus-One SVMs



Regions determined by majority vote over the classifiers