Decision Trees

Nicholas Ruozzi
University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag
Supervised Learning

• Input: labeled training data
 • i.e., data plus desired output

• Assumption: there exists a function f that maps data items x to their correct labels

• Goal: construct an approximation to f
Today

• We’ve been focusing on linear separators
 • Relatively easy to learn (using standard techniques)
 • Easy to picture, but not clear if data will be separable
• Next two lectures we’ll focus on other hypothesis spaces
 • Decision trees
 • Nearest neighbor classification
Application: Medical Diagnosis

• Suppose that you go to your doctor with flu-like symptoms

 • How does your doctor determine if you have a flu that requires medical attention?
Application: Medical Diagnosis

• Suppose that you go to your doctor with flu-like symptoms

• How does your doctor determine if you have a flu that requires medical attention?

• Check a list of symptoms:

 • Do you have a fever over 100.4 degrees Fahrenheit?
 • Do you have a sore throat or a stuffy nose?
 • Do you have a dry cough?
Application: Medical Diagnosis

• Just having some symptoms is not enough, you should also not have symptoms that are not consistent with the flu

• For example,

 • If you have a fever over 100.4 degrees Fahrenheit?

 • And you have a sore throat or a stuffy nose?

 • You probably do not have the flu (most likely just a cold)
Application: Medical Diagnosis

- In other words, your doctor will perform a series of tests and ask a series of questions in order to determine the likelihood of you having a severe case of the flu
- This is a method of coming to a diagnosis (i.e., a classification of your condition)
- We can view this decision making process as a tree
Decision Trees

- A tree in which each internal (non-leaf) node tests the value of a particular feature
- Each leaf node specifies a class label (in this case whether or not you should play tennis)
Decision Trees

- Features: (Outlook, Humidity, Wind)
- Classification is performed root to leaf
 - The feature vector (Sunny, Normal, Strong) would be classified as a yes instance
Decision Trees

• Can have continuous features too
 • Internal nodes for continuous features correspond to thresholds
Decision Trees

- Decision trees divide the feature space into axis parallel rectangles
Decision Trees

- Decision trees divide the feature space into axis parallel rectangles.
Decision Trees

- Decision trees divide the feature space into axis parallel rectangles.
Decision Trees

- Decision trees divide the feature space into axis parallel rectangles.
Decision Trees

• Decision trees divide the feature space into axis parallel rectangles
Decision Trees

- Decision trees divide the feature space into axis parallel rectangles
Decision Trees

• Worst case decision tree may require exponentially (in the dimension of the data) many nodes
Decision Tree Learning

• Basic decision tree building algorithm:
 • Pick some feature/attribute
 • Partition the data based on the value of this attribute
 • Recurse over each new partition
Basic decision tree building algorithm:

- Pick some feature/attribute (how to pick the “best”?)
- Partition the data based on the value of this attribute
- Recurse over each new partition (when to stop?)

We’ll focus on the discrete case first (i.e., each feature takes a value in some finite set)
Decision Trees

• What functions can be represented by decision trees?

• Are decision trees unique?
Decision Trees

• What functions can be represented by decision trees?

 • Every function of +/- can be represented by a sufficiently complicated decision tree

• Are decision trees unique?

 • No, many different decision trees are possible for the same set of labels
Choosing the Best Attribute

• Because the complexity of storage and classification increases with the size of the tree, should prefer smaller trees

 • Simplest models that explain the data are usually preferred over more complicated ones

 • Finding the smallest tree is an NP-hard problem

 • Instead, use a greedy heuristic based approach to pick the best attribute at each stage
Choosing the Best Attribute

\[x_1, x_2 \in \{0,1\} \]

Which attribute should you split on?

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

\[x_1, x_2 \in \{0,1\} \]

\[y = -: 0 \]
\[y = +: 4 \]
\[y = -: 3 \]
\[y = +: 1 \]
\[y = -: 1 \]
\[y = +: 3 \]
\[y = -: 2 \]
\[y = +: 2 \]
Choosing the Best Attribute

\[x_1, x_2 \in \{0,1\} \]

Which attribute should you split on?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>−</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>−</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>−</td>
</tr>
</tbody>
</table>

Can think of these counts as probability distributions over the labels: if \(x = 1 \), the probability that \(y = + \) is equal to 1
Choosing the Best Attribute

- The selected attribute is a good split if we are more “certain” about the classification after the split
 - If each partition with respect to the chosen attribute has a distinct class label, we are completely certain about the classification after partitioning
 - If the class labels are evenly divided between the partitions, the split isn’t very good (we are very uncertain about the label for each partition)
- What about other situations? How do you measure the uncertainty of a random process?
Discrete Probability

- **Sample space** specifies the set of possible outcomes

 - For example, $\Omega = \{H, T\}$ would be the set of possible outcomes of a coin flip

 - Each element $\omega \in \Omega$ is associated with a number $p(\omega) \in [0,1]$ called a **probability**

\[
\sum_{\omega \in \Omega} p(\omega) = 1
\]

 - For example, a biased coin might have $p(H) = .6$ and $p(T) = .4$
Discrete Probability

- An **event** is a subset of the sample space

 - Let $\Omega = \{1, 2, 3, 4, 5, 6\}$ be the 6 possible outcomes of a dice role

 - $A = \{1, 5, 6\} \subseteq \Omega$ would be the event that the dice roll comes up as a one, five, or six

- The probability of an event is just the sum of all of the outcomes that it contains

 - $p(A) = p(1) + p(5) + p(6)$
Independence

• Two events A and B are independent if

\[p(A \cap B) = p(A)p(B) \]

Let's suppose that we have a fair die: \[p(1) = \ldots = p(6) = \frac{1}{6} \]

If \(A = \{1, 2, 5\} \) and \(B = \{3, 4, 6\} \) are A and B independent?
Independence

- Two events A and B are independent if

\[p(A \cap B) = p(A)p(B) \]

Let's suppose that we have a fair die: \(p(1) = \ldots = p(6) = \frac{1}{6} \)

If \(A = \{1, 2, 5\} \) and \(B = \{3, 4, 6\} \) are A and B independent?

No!

\[p(A \cap B) = 0 \neq \frac{1}{4} \]
Independence

- Now, suppose that $\Omega = \{(1,1), (1,2), \ldots, (6,6)\}$ is the set of all possible rolls of two **unbiased** dice.

- Let $A = \{(1,1), (1,2), (1,3), \ldots, (1,6)\}$ be the event that the first die is a one and let $B = \{(1,6), (2,6), \ldots, (6,6)\}$ be the event that the second die is a six.

- Are A and B independent?
Independence

• Now, suppose that Ω = {(1,1), (1,2), ..., (6,6)} is the set of all possible rolls of two unbiased dice

• Let A = {(1,1), (1,2), (1,3), ..., (1,6)} be the event that the first die is a one and let B = {(1,6), (2,6), ..., (6,6)} be the event that the second die is a six

• Are A and B independent?

\[p(A \cap B) = \frac{1}{36} = \frac{1}{6} \times \frac{1}{6} \]

Yes!
Conditional Probability

• The **conditional probability** of an event \(A \) given an event \(B \) with \(p(B) > 0 \) is defined to be

\[
p(A|B) = \frac{p(A \cap B)}{P(B)}
\]

• This is the probability of the event \(A \cap B \) over the sample space \(\Omega' = B \)

• Some properties:

 • \(\sum_{\omega \in \Omega} p(\omega|B) = 1 \)

 • If \(A \) and \(B \) are independent, then \(p(A|B) = p(A) \)
Discrete Random Variables

- A discrete random variable, X, is a function from the state space Ω into a discrete space D.

- For each $x \in D$,

 $$p(X = x) \equiv p(\{\omega \in \Omega : X(\omega) = x\})$$

 is the probability that X takes the value x.

- $p(X)$ defines a probability distribution.

 - $\sum_{x \in D} p(X = x) = 1$.

- Random variables partition the state space into disjoint events.
Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let p be the uniform probability distribution over all possible outcomes in Ω

• Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω

 • $p(X = 2) = ?$

 • $p(X = 8) = ?$
Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let p be the uniform probability distribution over all possible outcomes in Ω

• Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω

 • $p(X = 2) = \frac{1}{36}$

 • $p(X = 8) = ?$
Example: Pair of Dice

- Let Ω be the set of all possible outcomes of rolling a pair of dice.
- Let p be the uniform probability distribution over all possible outcomes in Ω.
- Let $X(\omega)$ be equal to the sum of the value showing on the pair of dice in the outcome ω.

- $p(X = 2) = \frac{1}{36}$
- $p(X = 8) = \frac{5}{36}$
Discrete Random Variables

• We can have vectors of random variables as well

 \[X(\omega) = [X_1(\omega), ..., X_n(\omega)] \]

• The joint distribution is \(p(X_1 = x_1, ..., X_n = x_n) \) is

 \[p(X_1 = x_1 \cap \cdots \cap X_n = x_n) \]

 typically written as

 \[p(x_1, ..., x_n) \]

• Because \(X_i = x_i \) is an event, all of the same rules from basic probability apply
Entropy

• A standard way to measure uncertainty of a random variable is to use the entropy

\[H(Y) = - \sum_{Y=y} p(Y = y) \log p(Y = y) \]

• Entropy is maximized for uniform distributions

• Entropy is minimized for distributions that place all their probability on a single outcome
Entrophy of a Coin Flip

$H(X) = \text{outcome of coin flip with probability of heads } p$

$X = \text{outcome of coin flip with probability of heads } p$
Conditional Entropy

- We can also compute the entropy of a random variable conditioned on a different random variable

\[H(Y|X) = - \sum_x p(X = x) \sum_y p(Y = y|X = x) \log p(Y = y|X = x) \]

- This is called the **conditional entropy**

- This is the amount of information needed to quantify the random variable \(Y \) given the random variable \(X \)
Information Gain

- Using entropy to measure uncertainty, we can greedily select an attribute that guarantees the largest expected decrease in entropy (with respect to the empirical partitions)

\[IG(X) = H(Y) - H(Y|X) \]

- Called information gain

- Larger information gain corresponds to less uncertainty about \(Y \) given \(X \)

 - Note that \(H(Y|X) \leq H(Y) \)
Decision Tree Learning

- Basic decision tree building algorithm:
 - Pick the feature/attribute with the highest information gain
 - Partition the data based on the value of this attribute
 - Recurse over each new partition
Choosing the Best Attribute

$x_1, x_2 \in \{0,1\}$

Which attribute should you split on?

- x_1
 - $y = -: 0$ if $x_1 = 1$
 - $y = +: 4$ if $x_1 = 0$

- x_2
 - $y = -: 3$ if $x_2 = 1$
 - $y = +: 1$ if $x_2 = 0$

What is the information gain in each case?

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>−</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>−</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>−</td>
</tr>
</tbody>
</table>
Choosing the Best Attribute

\[x_1, x_2 \in \{0,1\} \]

Which attribute should you split on?

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>−</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>−</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>−</td>
</tr>
</tbody>
</table>

\[
H(Y) = -\frac{5}{8} \log \frac{5}{8} - \frac{3}{8} \log \frac{3}{8}
\]

\[
H(Y|X_1) = .5[−0 \log 0 − 1 \log 1] + .5[−.75 \log .75 − .25 \log .25]
\]

\[
H(Y|X_2) = .5[−.5 \log .5 − .5 \log .5] + .5[−.75 \log .75 − .25 \log .25]
\]

\[
H(Y) - H(Y|X_1) - H(Y) + H(Y|X_2) = −.5 \log .5 > 0
\]

Should split on \(x_1 \)
When to Stop

• If the current set is “pure” (i.e., has a single label in the output), stop

• If you run out of attributes to recurse on, even if the current data set isn’t pure, stop and use a majority vote

• If a partition contains no data points, use the majority vote at its parent in the tree

• If a partition contains no data items, nothing to recurse on

• For fixed depth decision trees, the final label is determined by majority vote
Handling Real-Valued Attributes

• For continuous attributes, use threshold splits
 • Split the tree into $x_k < t$ and $x_k \geq t$
 • Can split on the same attribute multiple times on the same path down the tree
• How to pick the threshold t?
Handling Real-Valued Attributes

• For continuous attributes, use threshold splits
 • Split the tree into $x_k < t$ and $x_k \geq t$
 • Can split on the same attribute multiple times on the same path down the tree
• How to pick the threshold t?
 • Try every possible t

How many possible t are there?
Handling Real-Valued Attributes

- Sort the data according to the k^{th} attribute: $z_1 > z_2 > \cdots > z_n$

- Only a finite number of t^k thresholds make sense
Handling Real-Valued Attributes

• Sort the data according to the k^{th} attribute: $z_1 > z_2 > \cdots > z_n$

• Only a finite number of thresholds make sense

 • Just split in between each consecutive pair of data points
 (e.g., splits of the form $t = \frac{z_i + z_{i+1}}{2}$)
Handling Real-Valued Attributes

• Sort the data according to the k^{th} attribute: $z_1 > z_2 > \cdots > z_n$

• Only a finite number of thresholds make sense

 • Just split in between each consecutive pair of data points (e.g., splits of the form $t = \frac{z_i + z_{i+1}}{2}$)

Does it make sense for a threshold to appear between two x’s with the same class label?
Handling Real-Valued Attributes

• Compute the information gain of each threshold

• Let $X: t$ denote splitting with threshold t and compute

\[
H(Y|X: t) = -p(X < t) \sum_y p(Y = y|X < t) \log p(Y = y|X < t) + \]
\[
-\log p(X \geq t) \sum_y p(Y = y|X \geq t) \log p(Y = y|X \geq t)
\]

• In the learning algorithm, maximize over all attributes and all possible thresholds of the real-valued attributes

\[
\max_t H(Y) - H(Y|X: t), \text{ for real-valued } X
\]
\[
H(Y) - H(Y|X), \text{ for discrete } X
\]
Decision Trees

• Because of speed/ease of implementation, decision trees are quite popular
 • Can be used for regression too

• Decision trees will always overfit!
 • It is always possible to obtain zero training error on the input data with a deep enough tree (if there is no noise in the labels)
 • Solution?