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Supervised Learning

• Input:  labeled training data

• i.e., data plus desired output

• Assumption:  there exists a function 𝑓𝑓 that maps data items 𝑥𝑥 to 
their correct labels

• Goal:  construct an approximation to 𝑓𝑓
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Today

• We’ve been focusing on linear separators

• Relatively easy to learn (using standard techniques)

• Easy to picture, but not clear if data will be separable

• Next two lectures we’ll focus on other hypothesis spaces

• Decision trees

• Nearest neighbor classification
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Application:  Medical Diagnosis

• Suppose that you go to your doctor with flu-like symptoms

• How does your doctor determine if you have a flu that 
requires medical attention?
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Application:  Medical Diagnosis

• Suppose that you go to your doctor with flu-like symptoms

• How does your doctor determine if you have a flu that 
requires medical attention?

• Check a list of symptoms:

• Do you have a fever over 100.4 degrees Fahrenheit?

• Do you have a sore throat or a stuffy nose?

• Do you have a dry cough?

5



Application:  Medical Diagnosis

• Just having some symptoms is not enough, you should also not 
have symptoms that are not consistent with the flu

• For example,

• If you have a fever over 100.4 degrees Fahrenheit?

• And you have a sore throat or a stuffy nose?

• You probably do not have the flu (most likely just a cold)

6



Application:  Medical Diagnosis

• In other words, your doctor will perform a series of tests and ask 
a series of questions in order to determine the likelihood of you 
having a severe case of the flu

• This is a method of coming to a diagnosis (i.e., a classification of 
your condition)

• We can view this decision making process as a tree
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Decision Trees

• A tree in which each internal (non-leaf) node tests the value of a 
particular feature

• Each leaf node specifies a class label (in this case whether or not
you should play tennis)
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Decision Trees

• Features:  (Outlook, Humidity, Wind)

• Classification is performed root to leaf

• The feature vector (Sunny, Normal, Strong) would be 
classified as a yes instance
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Decision Trees

• Can have continuous features too

• Internal nodes for continuous features correspond to 
thresholds

10



Decision Trees

• Decision trees divide the feature space into axis parallel 
rectangles
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Decision Trees

• Decision trees divide the feature space into axis parallel 
rectangles
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Decision Trees

• Worst case decision tree may require exponentially (in the 
dimension of the data) many nodes
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Decision Tree Learning

• Basic decision tree building algorithm:

• Pick some feature/attribute

• Partition the data based on the value of this attribute

• Recurse over each new partition
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Decision Tree Learning

• Basic decision tree building algorithm:

• Pick some feature/attribute (how to pick the “best”?)

• Partition the data based on the value of this attribute

• Recurse over each new partition (when to stop?)

We’ll focus on the discrete case first (i.e., each feature takes a 
value in some finite set)
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Decision Trees

• What functions can be represented by decision trees?

Every function can be represented by a sufficiently complicated 
decision tree

• Are decision trees unique?
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Decision Trees

• What functions can be represented by decision trees?

• Every function of +/- can be represented by a sufficiently 
complicated decision tree

• Are decision trees unique?

• No, many different decision trees are possible for the same 
set of labels
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Choosing the Best Attribute

• Because the complexity of storage and classification increases 
with the size of the tree, should prefer smaller trees

• Simplest models that explain the data are usually preferred 
over more complicated ones

• Finding the smallest tree is an NP-hard problem

• Instead, use a greedy heuristic based approach to pick the 
best attribute at each stage
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Choosing the Best Attribute

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒚𝒚
1 1 +
1 0 +
1 1 +
1 0 +
0 1 +
0 0 −
0 1 −
0 0 −
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Choosing the Best Attribute

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒚𝒚
1 1 +
1 0 +
1 1 +
1 0 +
0 1 +
0 0 −
0 1 −
0 0 −
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𝑥𝑥1 𝑥𝑥2

𝑦𝑦 = −: 0
𝑦𝑦 = +: 4

𝑦𝑦 = −: 3
𝑦𝑦 = +: 1

𝑦𝑦 = −: 1
𝑦𝑦 = +: 3
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Can think of these counts as 
probability distributions over the 

labels:  if 𝑥𝑥 = 1, the probability that 
𝑦𝑦 = + is equal to 1

𝑥𝑥1, 𝑥𝑥2 ∈ {0,1}

Which attribute should you split on?



Choosing the Best Attribute

• The selected attribute is a good split if we are more “certain” 
about the classification after the split

• If each partition with respect to the chosen attribute has a 
distinct class label, we are completely certain about the 
classification after partitioning

• If the class labels are evenly divided between the partitions, 
the split isn’t very good (we are very uncertain about the 
label for each partition)

• What about other situations?  How do you measure the 
uncertainty of a random process?
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Discrete Probability

• Sample space specifies the set of possible outcomes

• For example, Ω = {H, T} would be the set of possible 
outcomes of a coin flip

• Each element 𝜔𝜔 ∈ Ω is associated with a number p 𝜔𝜔 ∈ [0,1]
called a probability

�
𝜔𝜔∈Ω

𝑝𝑝 𝜔𝜔 = 1

• For example, a biased coin might have 𝑝𝑝 𝐻𝐻 = .6 and 
𝑝𝑝 𝑇𝑇 = .4
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Discrete Probability

• An event is a subset of the sample space

• Let Ω = {1, 2, 3, 4, 5, 6} be the 6 possible outcomes of a dice 
role

• 𝐴𝐴 = 1, 5, 6 ⊆ Ω would be the event that the dice roll 
comes up as a one, five, or six

• The probability of an event is just the sum of all of the 
outcomes that it contains

• 𝑝𝑝 𝐴𝐴 = 𝑝𝑝 1 + 𝑝𝑝 5 + 𝑝𝑝(6)
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Independence

• Two events A and B are independent if 

𝑝𝑝 𝐴𝐴 ∩ 𝐵𝐵 = 𝑝𝑝 𝐴𝐴 𝑃𝑃(𝐵𝐵)

Let's suppose that we have a fair die:  𝑝𝑝 1 = … = 𝑝𝑝 6 =
1/6

If 𝐴𝐴 = {1, 2, 5} and 𝐵𝐵 = {3, 4, 6} are 𝐴𝐴 and 𝐵𝐵 indpendent?

1
2

5
3

6
4

𝐴𝐴 𝐵𝐵
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Independence

• Two events A and B are independent if 

𝑝𝑝 𝐴𝐴 ∩ 𝐵𝐵 = 𝑝𝑝 𝐴𝐴 𝑃𝑃(𝐵𝐵)

Let's suppose that we have a fair die:  𝑝𝑝 1 = … = 𝑝𝑝 6 =
1/6

If 𝐴𝐴 = {1, 2, 5} and 𝐵𝐵 = {3, 4, 6} are 𝐴𝐴 and 𝐵𝐵 indpendent?

1
2

5
3

6
4

𝐴𝐴 𝐵𝐵
No!

𝑝𝑝 𝐴𝐴 ∩ 𝐵𝐵 = 0 ≠
1
4
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Independence

• Now, suppose that Ω = { 1,1 , 1,2 , … , 6,6 } is the set of all 
possible rolls of two unbiased dice

• Let 𝐴𝐴 = { 1,1 , 1,2 , 1,3 , … , 1,6 } be the event that the first 
die is a one and let 𝐵𝐵 = { 1,6 , 2,6 , … , 6,6 } be the event 
that the second die is a six

• Are 𝐴𝐴 and 𝐵𝐵 independent?

(1,1)
1,2

(1,3)

(1,4)

(1,5)
(1,6)

(3,6)

2,6
(4,6)

(5,6)

(6,6)

𝐴𝐴 𝐵𝐵
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Independence

• Now, suppose that Ω = { 1,1 , 1,2 , … , 6,6 } is the set of all 
possible rolls of two unbiased dice

• Let 𝐴𝐴 = { 1,1 , 1,2 , 1,3 , … , 1,6 } be the event that the first 
die is a one and let 𝐵𝐵 = { 1,6 , 2,6 , … , 6,6 } be the event 
that the second die is a six

• Are 𝐴𝐴 and 𝐵𝐵 independent?

(1,1)
𝐴𝐴 𝐵𝐵

Yes!

𝑝𝑝 𝐴𝐴 ∩ 𝐵𝐵 =
1

36
=

1
6
∗

1
6

1,2

(1,3)

(1,4)

(1,5)
(1,6)

(3,6)

2,6
(4,6)

(5,6)

(6,6)
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Conditional Probability

• The conditional probability of an event 𝐴𝐴 given an event 𝐵𝐵
with 𝑝𝑝 𝐵𝐵 > 0 is defined to be

𝑝𝑝 𝐴𝐴 𝐵𝐵 =
𝑝𝑝 𝐴𝐴 ∩ 𝐵𝐵
𝑃𝑃 𝐵𝐵

• This is the probability of the event 𝐴𝐴 ∩ 𝐵𝐵 over the sample space 
Ω′ = 𝐵𝐵

• Some properties:

• ∑𝜔𝜔∈Ω𝑝𝑝(𝜔𝜔|𝐵𝐵) = 1

• If 𝐴𝐴 and 𝐵𝐵 are independent, then 𝑝𝑝 𝐴𝐴 𝐵𝐵 = 𝑝𝑝(𝐴𝐴)

32



Discrete Random Variables

• A discrete random variable, 𝑋𝑋, is a function from the state space 
Ω into a discrete space 𝐷𝐷

• For each 𝑥𝑥 ∈ 𝐷𝐷,

𝑝𝑝 𝑋𝑋 = 𝑥𝑥 ≡ 𝑝𝑝 𝜔𝜔 ∈ Ω ∶ 𝑋𝑋 𝜔𝜔 = 𝑥𝑥

is the probability that 𝑋𝑋 takes the value 𝑥𝑥

• 𝑝𝑝(𝑋𝑋) defines a probability distribution

• ∑𝑥𝑥∈𝐷𝐷 𝑝𝑝(𝑋𝑋 = 𝑥𝑥) = 1

• Random variables partition the state space into disjoint events
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝𝑝 be the uniform probability distribution over all possible 
outcomes in Ω

• Let 𝑋𝑋 𝜔𝜔 be equal to the sum of the value showing on the pair 
of dice in the outcome 𝜔𝜔

• 𝑝𝑝 𝑋𝑋 = 2 = ?

• 𝑝𝑝 𝑋𝑋 = 8 = ? 
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• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝𝑝 be the uniform probability distribution over all possible 
outcomes in Ω

• Let 𝑋𝑋 𝜔𝜔 be equal to the sum of the value showing on the pair 
of dice in the outcome 𝜔𝜔

• 𝑝𝑝 𝑋𝑋 = 2 = 𝟏𝟏
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Example: Pair of Dice

• Let Ω be the set of all possible outcomes of rolling a pair of dice

• Let 𝑝𝑝 be the uniform probability distribution over all possible 
outcomes in Ω

• Let 𝑋𝑋 𝜔𝜔 be equal to the sum of the value showing on the pair 
of dice in the outcome 𝜔𝜔

• 𝑝𝑝 𝑋𝑋 = 2 = 𝟏𝟏
𝟑𝟑𝟑𝟑

• 𝑝𝑝 𝑋𝑋 = 8 = 𝟓𝟓
𝟑𝟑𝟑𝟑
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Discrete Random Variables

• We can have vectors of random variables as well

𝑋𝑋 𝜔𝜔 = [𝑋𝑋1 𝜔𝜔 , … ,𝑋𝑋𝑛𝑛 𝜔𝜔 ]

• The joint distribution is 𝑝𝑝 𝑋𝑋1 = 𝑥𝑥1, … ,𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛 is

𝑝𝑝(𝑋𝑋1 = 𝑥𝑥1 ∩ ⋯∩ 𝑋𝑋𝑛𝑛 = 𝑥𝑥𝑛𝑛)

typically written as

𝑝𝑝(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

• Because 𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 is an event, all of the same rules from basic 
probability apply

37



Entropy

• A standard way to measure uncertainty of a random variable is 
to use the entropy

𝐻𝐻 𝑌𝑌 = −�
𝑌𝑌=𝑦𝑦

𝑝𝑝 𝑌𝑌 = 𝑦𝑦 log𝑝𝑝(𝑌𝑌 = 𝑦𝑦)

• Entropy is maximized for uniform distributions

• Entropy is minimized for distributions that place all their 
probability on a single outcome
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Entropy of a Coin Flip

39

𝐻𝐻(𝑋𝑋)

𝑝𝑝

𝑋𝑋 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑓𝑓 𝑜𝑜𝑜𝑜𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑐𝑐𝑝𝑝 𝑤𝑤𝑐𝑐𝑜𝑜𝑤 𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑓𝑓𝑐𝑐𝑜𝑜𝑦𝑦 𝑜𝑜𝑓𝑓 𝑤𝑜𝑜𝑝𝑝𝑒𝑒𝑒𝑒 𝑝𝑝



Conditional Entropy

• We can also compute the entropy of a random variable 
conditioned on a different random variable 

𝐻𝐻 𝑌𝑌 𝑋𝑋 = −�
𝑥𝑥

𝑝𝑝(𝑋𝑋 = 𝑥𝑥)�
𝑦𝑦

𝑝𝑝 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 = 𝑥𝑥 log𝑝𝑝(𝑌𝑌 = 𝑦𝑦|𝑋𝑋 = 𝑥𝑥)

• This is called the conditional entropy

• This is the amount of information needed to quantify the 
random variable 𝑌𝑌 given the random variable 𝑋𝑋
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Information Gain

• Using entropy to measure uncertainty, we can greedily select an 
attribute that guarantees the largest expected decrease in 
entropy (with respect to the empirical partitions)

𝐼𝐼𝐼𝐼 𝑋𝑋 = 𝐻𝐻 𝑌𝑌 − 𝐻𝐻(𝑌𝑌|𝑋𝑋)

• Called information gain

• Larger information gain corresponds to less uncertainty 
about 𝑌𝑌 given 𝑋𝑋

• Note that 𝐻𝐻 𝑌𝑌 𝑋𝑋 ≤ 𝐻𝐻(𝑌𝑌)
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Decision Tree Learning

• Basic decision tree building algorithm:

• Pick the feature/attribute with the highest information gain

• Partition the data based on the value of this attribute

• Recurse over each new partition

42



Choosing the Best Attribute

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒚𝒚
1 1 +
1 0 +
1 1 +
1 0 +
0 1 +
0 0 −
0 1 −
0 0 −
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𝑥𝑥1 𝑥𝑥2

𝑦𝑦 = −: 0
𝑦𝑦 = +: 4

𝑦𝑦 = −: 3
𝑦𝑦 = +: 1

𝑦𝑦 = −: 1
𝑦𝑦 = +: 3

𝑦𝑦 = −: 2
𝑦𝑦 = +: 2

0 011

What is the information 
gain in each case?

𝑥𝑥1, 𝑥𝑥2 ∈ {0,1}

Which attribute should you split on?



Choosing the Best Attribute

𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒚𝒚
1 1 +
1 0 +
1 1 +
1 0 +
0 1 +
0 0 −
0 1 −
0 0 −
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𝑥𝑥1 𝑥𝑥2

𝑦𝑦 = −: 0
𝑦𝑦 = +: 4

𝑦𝑦 = −: 3
𝑦𝑦 = +: 1

𝑦𝑦 = −: 1
𝑦𝑦 = +: 3

𝑦𝑦 = −: 2
𝑦𝑦 = +: 2

0 011

𝐻𝐻 𝑌𝑌 = −
5
8 log

5
8 −

3
8 log

3
8

𝐻𝐻 𝑌𝑌 𝑋𝑋1 = .5 −0 log 0 − 1 log 1 + .5 −.75 log .75 − .25 log .25
𝐻𝐻 𝑌𝑌 𝑋𝑋2 = .5 −.5 log .5 − .5 log .5 + .5 −.75 log .75 − .25 log .25

𝐻𝐻 𝑌𝑌 − 𝐻𝐻 𝑌𝑌 𝑋𝑋1 − 𝐻𝐻 𝑌𝑌 + 𝐻𝐻 𝑌𝑌 𝑋𝑋2 = −.5 log .5 > 0 Should split on 𝑥𝑥1

𝑥𝑥1, 𝑥𝑥2 ∈ {0,1}

Which attribute should you split on?



When to Stop

• If the current set is “pure” (i.e., has a single label in the output), 
stop

• If you run out of attributes to recurse on, even if the current 
data set isn’t pure, stop and use a majority vote

• If a partition contains no data points, use the majority vote at its 
parent in the tree

• If a partition contains no data items, nothing to recurse on

• For fixed depth decision trees, the final label is determined by 
majority vote
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Handling Real-Valued Attributes

• For continuous attributes, use threshold splits

• Split the tree into 𝑥𝑥𝑘𝑘 < 𝑜𝑜 and 𝑥𝑥𝑘𝑘 ≥ 𝑜𝑜

• Can split on the same attribute multiple times on the same 
path down the tree

• How to pick the threshold 𝑜𝑜?
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Handling Real-Valued Attributes

• For continuous attributes, use threshold splits

• Split the tree into 𝑥𝑥𝑘𝑘 < 𝑜𝑜 and 𝑥𝑥𝑘𝑘 ≥ 𝑜𝑜

• Can split on the same attribute multiple times on the same 
path down the tree

• How to pick the threshold 𝑜𝑜?

• Try every possible 𝑜𝑜

47

How many possible 𝑜𝑜 are there?



Handling Real-Valued Attributes

• Sort the data according to the 𝑘𝑘𝑡𝑡𝑡 attribute:  𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑛𝑛

• Only a finite number of thresholds make sense
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Handling Real-Valued Attributes

• Sort the data according to the 𝑘𝑘𝑡𝑡𝑡 attribute:  𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑛𝑛

• Only a finite number of thresholds make sense

• Just split in between each consecutive pair of data points 
(e.g., splits of the form 𝑜𝑜 = 𝑧𝑧𝑖𝑖+𝑧𝑧𝑖𝑖+1

2
)
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Handling Real-Valued Attributes

• Sort the data according to the 𝑘𝑘𝑡𝑡𝑡 attribute:  𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑛𝑛

• Only a finite number of thresholds make sense

• Just split in between each consecutive pair of data points 
(e.g., splits of the form 𝑜𝑜 = 𝑧𝑧𝑖𝑖+𝑧𝑧𝑖𝑖+1

2
)
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Does it make 
sense for a 
threshold to 
appear 
between two 
𝑥𝑥’s with the 
same class 
label?



Handling Real-Valued Attributes

• Compute the information gain of each threshold

• Let 𝑋𝑋: 𝑜𝑜 denote splitting with threshold 𝑜𝑜 and compute

𝐻𝐻 𝑌𝑌 𝑋𝑋: 𝑜𝑜 = −𝑝𝑝 𝑋𝑋 < 𝑜𝑜 �
𝑦𝑦

𝑝𝑝 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 < 𝑜𝑜 log𝑝𝑝 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 < 𝑜𝑜 +

−𝑝𝑝 𝑋𝑋 ≥ 𝑜𝑜 �
𝑦𝑦

𝑝𝑝 𝑌𝑌 = 𝑦𝑦 𝑋𝑋 ≥ 𝑜𝑜 log𝑝𝑝(𝑌𝑌 = 𝑦𝑦|𝑋𝑋 ≥ 𝑜𝑜)

• In the learning algorithm, maximize over all attributes and all 
possible thresholds of the real-valued attributes

max
𝑡𝑡
𝐻𝐻 𝑌𝑌 − 𝐻𝐻(𝑌𝑌|𝑋𝑋: 𝑜𝑜), for real-valued 𝑋𝑋

𝐻𝐻 𝑌𝑌 − 𝐻𝐻(𝑌𝑌|𝑋𝑋), for discrete 𝑋𝑋
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Decision Trees

• Because of speed/ease of implementation, decision trees are 
quite popular

• Can be used for regression too

• Decision trees will always overfit!

• It is always possible to obtain zero training error on the input 
data with a deep enough tree (if there is no noise in the 
labels)

• Solution?
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