Variance Reduction and Ensemble Methods

Nicholas Ruozzi
 University of Texas at Dallas

Based on the slides of Vibhav Gogate and David Sontag

Last Time

- PAC learning
- Bias/variance tradeoff
- small hypothesis spaces (not enough flexibility) can have high bias
- rich hypothesis spaces (too much flexibility) can have high variance
- Today: more on this phenomenon and how to get around it

Intuition

- Bias
- Measures the accuracy or quality of the algorithm
- High bias means a poor match
- Variance
- Measures the precision or specificity of the match
- High variance means a weak match
- We would like to minimize each of these
- Unfortunately, we can't do this independently, there is a trade-off

Bias-Variance Analysis in Regression

- True function is $y=f(x)+\epsilon$
- where ϵ is normally distributed with zero mean and standard deviation σ
- Given a set of training examples, $\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)$, we fit a hypothesis $g(x)=w^{T} x+b$ to the data to minimize the squared error

$$
\sum_{i}\left[y^{(i)}-g\left(x^{(i)}\right)\right]^{2}
$$

2-D Example

Sample 20 points from

$$
f(x)=x+2 \sin (1.5 x)+N(0,0.2)
$$

2-D Example

50 fits (20 examples each)

Bias-Variance Analysis

- Given a new data point x^{\prime} with observed value $y^{\prime}=$ $f\left(x^{\prime}\right)+\epsilon$, want to understand the expected prediction error
- Suppose that training samples are drawn independently from a distribution $p(S)$, want to compute

$$
E\left[\left(y^{\prime}-g_{S}\left(x^{\prime}\right)\right)^{2}\right]
$$

Probability Reminder

- Variance of a random variable, Z

$$
\begin{aligned}
\operatorname{Var}(Z) & =E\left[(Z-E[Z])^{2}\right] \\
& =E\left[Z^{2}-2 Z E[Z]+E[Z]^{2}\right] \\
& =E\left[Z^{2}\right]-E[Z]^{2}
\end{aligned}
$$

- Properties of $\operatorname{Var}(Z)$

$$
\operatorname{Var}(a Z)=E\left[a^{2} Z^{2}\right]-E[a Z]^{2}=a^{2} \operatorname{Var}(Z)
$$

Bias-Variance-Noise Decomposition

$$
\begin{aligned}
E\left[\left(y^{\prime}-g_{S}\left(x^{\prime}\right)\right)^{2}\right]= & E\left[g_{S}\left(x^{\prime}\right)^{2}-2 g_{S}\left(x^{\prime}\right) y^{\prime}+y^{\prime 2}\right] \\
= & E\left[g_{S}\left(x^{\prime}\right)^{2}\right]-2 E\left[g_{S}\left(x^{\prime}\right)\right] E\left[y^{\prime}\right]+E\left[y^{\prime 2}\right] \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+E\left[g_{S}\left(x^{\prime}\right)\right]^{2}-2 E\left[g_{S}\left(x^{\prime}\right)\right] f\left(x^{\prime}\right) \\
& \quad+\operatorname{Var}\left(y^{\prime}\right)+f\left(x^{\prime}\right)^{2} \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+\left(E\left[g_{s}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\operatorname{Var}(\epsilon) \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+\left(E\left[g_{s}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\sigma^{2}
\end{aligned}
$$

Bias-Variance-Noise Decomposition

$$
\begin{array}{ll}
E\left[\left(y^{\prime}-g_{S}\left(x^{\prime}\right)\right)^{2}\right]= & E\left[g_{S}\left(x^{\prime}\right)^{2}-2 g_{S}\left(x^{\prime}\right) y^{\prime}+y^{\prime 2}\right] \\
= & E\left[g_{S}\left(x^{\prime}\right)^{2}\right]+2 E\left[g_{S}\left(x^{\prime}\right)\right] E\left[y^{\prime}\right]-E\left[y^{\prime 2}\right] \\
\text { The samples } S \\
\text { and the noise } \\
\begin{array}{l}
\text { G are } \\
\text { independent }
\end{array} & \quad \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+E\left[g_{S}\left(x^{\prime}\right)\right]^{2}-2 E\left[g_{S}\left(x^{\prime}\right)\right] f\left(x^{\prime}\right) \\
& \quad+\operatorname{Var}\left(y^{\prime}\right)+f\left(x^{\prime}\right)^{2} \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+\left(E\left[g_{s}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\operatorname{Var}(\epsilon) \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+\left(E\left[g_{S}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\sigma^{2}
\end{array}
$$

Bias-Variance-Noise Decomposition

$$
\begin{aligned}
E\left[\left(y^{\prime}-g_{S}\left(x^{\prime}\right)\right)^{2}\right] & =E\left[g_{S}\left(x^{\prime}\right)^{2}-2 g_{S}\left(x^{\prime}\right) y^{\prime}+y^{\prime 2}\right] \\
& =E\left[g_{S}\left(x^{\prime}\right)^{2}\right]-2 E\left[g_{S}\left(x^{\prime}\right)\right] E\left[y^{\prime}\right]+E\left[y^{\prime 2}\right] \\
\begin{array}{l}
\text { Follows from } \\
\text { definition of } \\
\text { variance }
\end{array} & =\underbrace{\operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+E\left[g_{S}\left(x^{\prime}\right)\right]^{2}-2 E\left[g_{S}\left(x^{\prime}\right)\right] f\left(x^{\prime}\right)} \\
& =\operatorname{Var}\left(y^{\prime}\right)+f\left(x^{\prime}\right)^{2} \\
& =\operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+\left(E\left[g_{s}\left(x^{\prime}\right)\right)+\left(E\left[g_{S}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\operatorname{Var}(\epsilon)\right.
\end{aligned}
$$

Bias-Variance-Noise Decomposition

$$
\begin{aligned}
E\left[\left(y^{\prime}-g_{S}\left(x^{\prime}\right)\right)^{2}\right]= & E\left[g_{S}\left(x^{\prime}\right)^{2}-2 g_{S}\left(x^{\prime}\right) y^{\prime}+y^{\prime 2}\right] \\
= & E\left[g_{S}\left(x^{\prime}\right)^{2}\right]-2 E\left[g_{S}\left(x^{\prime}\right)\right] E\left[y^{\prime}\right]+E\left[y^{\prime 2}\right] \quad E\left[y^{\prime}\right]=f\left(x^{\prime}\right) \\
= & \left.\operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+E\left[g_{S}\left(x^{\prime}\right)\right]^{2}-2 E\left[g_{S}(x)\right] f\left(x^{\prime}\right)\right) \\
& +\operatorname{Var}\left(y^{\prime}\right)+f\left(x^{\prime}\right)^{2} \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+\left(E\left[g_{S}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\operatorname{Var}(\epsilon) \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+\left(E\left[g_{S}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\sigma^{2}
\end{aligned}
$$

Bias-Variance-Noise Decomposition

$$
\begin{aligned}
E\left[\left(y^{\prime}-g_{S}\left(x^{\prime}\right)\right)^{2}\right]= & E\left[g_{S}\left(x^{\prime}\right)^{2}-2 g_{S}\left(x^{\prime}\right) y^{\prime}+y^{\prime 2}\right] \\
= & E\left[g_{S}\left(x^{\prime}\right)^{2}\right]-2 E\left[g_{S}\left(x^{\prime}\right)\right] E\left[y^{\prime}\right]+E\left[y^{\prime 2}\right] \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+E\left[g_{s}\left(x^{\prime}\right)\right]^{2}-2 E\left[g_{S}\left(x^{\prime}\right)\right] f\left(x^{\prime}\right) \\
& +\operatorname{Var}\left(y^{\prime}\right)+f\left(x^{\prime}\right)^{2} \\
= & \operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)+\left(E\left[g_{s}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\operatorname{Var}(\epsilon) \\
= & \underbrace{\operatorname{Var}\left(g_{S}\left(x^{\prime}\right)\right)}_{\text {Variance }}+\underbrace{\left(E\left[g_{s}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)\right)^{2}+\underbrace{\sigma^{2}}}_{\text {Bias }} \quad \text { Noise }
\end{aligned}
$$

Bias, Variance, and Noise

- Variance: $E\left[\left(g_{S}\left(x^{\prime}\right)-E\left[g_{S}\left(x^{\prime}\right)\right]\right)^{2}\right]$
- Describes how much $g_{S}\left(x^{\prime}\right)$ varies from one training set S to another
- Bias: $E\left[g_{S}\left(x^{\prime}\right)\right]-f\left(x^{\prime}\right)$
- Describes the average error of $g_{S}\left(x^{\prime}\right)$
- Noise: $E\left[\left(y^{\prime}-f\left(x^{\prime}\right)\right)^{2}\right]=E\left[\epsilon^{2}\right]=\sigma^{2}$
- Describes how much y^{\prime} varies from $f\left(x^{\prime}\right)$

2-D Example

50 fits (20 examples each)

Bias

UTD

Variance

Noise

UTD

Bias

- Low bias
$-?$
- High bias
$-?$

Bias

- Low bias
- Linear regression applied to linear data
- 2nd degree polynomial applied to quadratic data
- High bias
- Constant function
- Linear regression applied to non-linear data

Variance

- Low variance
-?
- High variance
-?

Variance

- Low variance
- Constant function
- Model independent of training data
- High variance
- High degree polynomial

Bias/Variance Tradeoff

- (bias ${ }^{2}+$ variance) is what counts for prediction
- As we saw in PAC learning, we often have
- Low bias \Rightarrow high variance
- Low variance \Rightarrow high bias
- Is this a firm rule?

Reduce Variance Without Increasing Bias

- Averaging reduces variance: let Z_{1}, \ldots, Z_{N} be i.i.d random variables

$$
\operatorname{Var}\left(\frac{1}{N} \sum_{i} Z_{i}\right)=\frac{1}{N} \operatorname{Var}\left(Z_{i}\right)
$$

- Idea: average models to reduce model variance
- The problem
- Only one training set
- Where do multiple models come from?

Bagging: Bootstrap Aggregation

- Take repeated bootstrap samples from training set D (Breiman, 1994)
- Bootstrap sampling: Given set D containing N training examples, create D^{\prime} by drawing N examples at random with replacement from D
- Bagging
- Create k bootstrap samples D_{1}, \ldots, D_{k}
- Train distinct classifier on each D_{i}
- Classify new instance by majority vote / average

Bagging

Data	1	2	3	4	5	6	7	8	9	10
BS 1	7	1	9	10	7	8	8	4	7	2
BS 2	8	1	3	1	1	9	7	4	10	1
BS 3	5	4	8	8	2	5	5	7	8	8

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability
$\left(1-\frac{1}{N}\right)^{N}$ of not being selected
- Expected number of data points in each sample is then

$$
N \cdot\left(1-\left(1-\frac{1}{N}\right)^{N}\right) \approx N \cdot(1-\exp (-1))=.632 \cdot N
$$

Bagging

Data	1	2	3	4	5	6	7	8	9	10
BS 1	7	1	9	10	7	8	8	4	7	2
BS 2	8	1	3	1	1	9	7	4	10	1
BS 3	5	4	8	8	2	5	5	7	8	8

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability
$\left(1-\frac{1}{N}\right)^{N}$ of not being selected
- If we have 1 TB of data, each bootstrap sample will be
$\sim 632 \mathrm{~GB}$ (this can present computational challenges)

Decision Tree Bagging

[image from the slides of David Sontag]

Decision Tree Bagging (100 Bagged Trees)

[image from the slides of David Sontag]

Bagging Experiments

i) The data set is randomly divided into a test set \mathcal{T} and a learning set \mathcal{L}. In the real data sets \mathcal{T} is 10% of the data. In the simulated waveform data, 1800 samples are generated. \mathcal{L} consists of 300 of these, and \mathcal{T} the remainder.
ii) A classification tree is constructed from \mathcal{L} using 10 -fold cross-validation. Running the test set \mathcal{T} down this tree gives the misclassification rate $e_{S}(\mathcal{L}, \mathcal{T})$.
iii) A bootstrap sample \mathcal{L}_{B} is selected from \mathcal{L}, and a tree grown using \mathcal{L}_{B}. The original learning set \mathcal{L} is used as test set to select the best pruned subtree (see Section 4.3). This is repeated 50 times giving tree classifiers $\phi_{1}(\boldsymbol{x}), \ldots, \phi_{50}(\boldsymbol{x})$.
iv) If $\left(j_{n}, \boldsymbol{x}_{n}\right) \in \mathcal{T}$, then the estimated class of \boldsymbol{x}_{n} is that class having the plurality in $\phi_{1}\left(\boldsymbol{x}_{n}\right), \ldots, \phi_{50}\left(\boldsymbol{x}_{n}\right)$. If there is a tie, the estimated class is the one with the lowest class label. The proportion of times the estimated class differs from the true class is the bagging misclassification rate $e_{B}(\mathcal{L}, \mathcal{T})$.
v) The random division of the data into \mathcal{L} and \mathcal{T} is repeated 100 times and the reported \bar{e}_{S}, \bar{e}_{B} are the averages over the 100 iterations. For the waveform data, 1800 new cases are generated at each iteration. Standard errors of \bar{e}_{S} and \bar{e}_{B} over the 100 iterations are also computed.

Bagging Results

Data Set	\bar{e}_{S}	\bar{e}_{B}	Decrease
waveform	29.1	19.3	34%
heart	4.9	2.8	43%
breast cancer	5.9	3.7	37%
ionosphere	11.2	7.9	29%
diabetes	25.3	23.9	6%
glass	30.4	23.6	22%
loybean	8.6	6.8	21%

Breiman "Bagging Predictors" Berkeley Statistics Department TR\#421, 1994

Random Forests

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "bagging" and "random input vectors"
- Bagging method: each tree is grown using a bootstrap sample of training data
- Random vector method: best split at each node is chosen from a random sample of m attributes instead of all attributes

Random Forest Algorithm

- For $b=1$ to B
- Draw a bootstrap sample of size N from the data
- Grow a tree T_{b} using the bootstrap sample as follows
- Choose m attributes uniformly at random from the data
- Choose the best attribute among the m to split on
- Split on the best attribute and recurse (until partitions have fewer than $s_{\text {min }}$ number of nodes)
- Prediction for a new data point x
- Regression: $\frac{1}{B} \sum_{b} T_{b}(x)$
- Classification: choose the majority class label among $T_{1}(x), \ldots, T_{B}(x)$

Random Forest Demo

A demo of random forests implemented in JavaScript

When Will Bagging Improve Accuracy?

- Depends on the stability of the base-level classifiers.
- A learner is unstable if a small change to the training set causes a large change in the output hypothesis
- If small changes in D cause large changes in the output, then there will be an improvement in performance with bagging
- Bagging helps unstable procedures, but could hurt the performance of stable procedures
- Decision trees are unstable
$-k$-nearest neighbor is stable

