Dimensionality Reduction: PCA

Nicholas Ruozzi

University of Texas at Dallas

Eigenvalues

- λ is an eigenvalue of a matrix $A \in \mathbb{R}^{n \times n}$ if the linear system $A x=\lambda x$ has at least one non-zero solution

- If $A x=\lambda x$ we say that λ is an eigenvalue of A with corresponding eigenvector x

- Could be multiple eigenvectors for the same λ

Eigenvalues of Symmetric Matrices

- If $A \in \mathbb{R}^{n \times n}$ is symmetric, then it has n linearly independent eigenvectors v_{1}, \ldots, v_{n} corresponding to n real eigenvalues
- Moreover, it has n linearly independent orthonormal eigenvectors:
- $v_{i}^{T} v_{j}=0$ for all $i \neq j$
- $v_{i}^{T} v_{i}=1$ for all i

Eigenvalues of Symmetric Matrices

- If $A \in \mathbb{R}^{n \times n}$ is symmetric, then it has n linearly independent eigenvectors v_{1}, \ldots, v_{n} corresponding to n real eigenvalues
- A symmetric matrix is positive definite if and only if all of its eigenvalues are positive

Example

- The 2×2 identity matrix has all of its eigenvalues equal to 1 with orthonormal eigenvectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- The matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ has eigenvalues 0 and 2 with orthonormal eigenvectors $\left[\begin{array}{c}\frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ and $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$

Eigenvalues

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric
- Any $x \in \mathbb{R}^{n}$ can be written as $x=\sum_{i=1}^{n} c_{i} v_{i}$ where v_{1}, \ldots, v_{n} are the eigenvectors of A
$-A x=\sum_{i=1}^{n} \lambda_{i} c_{i} v_{i}$
$-A^{2} x=\sum_{i=1}^{n} \lambda_{i}^{2} c_{i} v_{i}$ \vdots
$-A^{t} x=\sum_{i=1}^{n} \lambda_{i}^{t} c_{i} v_{i}$

Eigenvalues

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric
- Any $x \in \mathbb{R}^{n}$ can be written as $x=\sum_{i=1}^{n} c_{i} v_{i}$ where v_{1}, \ldots, v_{n} are the eigenvectors of A
$-c_{i}=v_{i}^{T} x$, this is the projection of x along the line given by v_{i} (assuming that v_{i} is a unit vector)

Eigenvalues of Symmetric Matrices

- Let $Q \in \mathbb{R}^{n \times n}$ be the matrix whose $i^{t h}$ column is v_{i} and $D \in \mathbb{R}^{n \times n}$ be the diagonal matrix such that $D_{i i}=\lambda_{i}$
$-A x=Q D Q^{T} x$
- Can throw away some eigenvectors to approximate this quantity
- For example, let Q_{k} be the matrix formed by keeping only the top k eigenvectors and D_{k} be the diagonal matrix whose diagonal consists of the top k eigenvalues

Frobenius Norm

- The Frobenius norm is a matrix norm written as

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n}\left|A_{i j}\right|^{2}}
$$

- $Q_{k} D_{k} Q_{k}^{T}$ is the best rank k approximation of the matrix symmetric matrix A with respect to the Frobenius norm

Principal Component Analysis

- Given a collection of data points sampled from some distribution $x_{1}, \ldots, x_{p} \in \mathbb{R}^{n}$
- Construct the matrix $X \in \mathbb{R}^{n \times p}$ whose $i^{\text {th }}$ column is x_{i}
- Want to reduce the dimensionality of the data while still maintaining a good approximation of the sample mean and variance

Principal Component Analysis

- Construct the matrix $W \in \mathbb{R}^{n \times p}$ whose $i^{\text {th }}$ column is

$$
x_{i}-\frac{\sum_{j} x_{j}}{p}
$$

- This gives the data a zero mean
- The matrix $W W^{T}$ is the sample covariance matrix
$-W W^{T}$ is symmetric and positive semidefinite (simple proof later)

Principal Component Analysis

- PCA attempts to find a set of orthogonal vectors that best explain the variance of the sample covariance matrix
- From our previous discussion, these are exactly the eigenvectors of $W W^{T}$

PCA in Practice

- Forming the matrix $W W^{T}$ can require a lot of memory (especially if $n \gg p$)
- Need a faster way to compute this without forming the matrix explicitly
- Typical approach: use the singular value decomposition

Singular Value Decomposition (SVD)

- Every matrix $B \in \mathbb{R}^{n \times p}$ admits a decomposition of the form

$$
B=U \Sigma V^{T}
$$

- where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, $\Sigma \in \mathbb{R}^{n \times p}$ is non-negative diagonal matrix, and $V \in \mathbb{R}^{p \times p}$ is an orthogonal matrix
- A matrix $C \in \mathbb{R}^{m \times m}$ is orthogonal if $C^{T}=C^{-1}$.

Equivalently, the rows and columns of C are orthonormal vectors

Singular Value Decomposition (SVD)

- Every matrix $B \in \mathbb{R}^{n \times p}$ admits a decomposition of the form

Diagonal elements

$$
B=U \Sigma V^{T}
$$

$$
\text { of } \sum \text { called singular }
$$

values

- where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, $\Sigma \in \mathbb{R}^{n \times p}$ is non-negative diagonal matrix, and $V \in \mathbb{R}^{p \times p}$ is an orthogonal matrix
- A matrix $C \in \mathbb{R}^{m \times m}$ is orthogonal if $C^{T}=C^{-1}$.

Equivalently, the rows and columns of C are orthonormal vectors

SVD and PCA

- Returning to PCA
- Let $W=U \Sigma V^{T}$ be the SVD of W
$-W W^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma \Sigma^{T} U^{T}$
$-U$ is then the matrix of eigenvectors of $W W^{T}$
- If we can compute the SVD of W, then we don't need to form the matrix $W W^{T}$

SVD and PCA

- For any matrix $A, A A^{T}$ is symmetric and positive semidefinite
- Let $A=U \Sigma V^{T}$ be the SVD of A
$-A A^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma \Sigma^{T} U^{T}$
$-U$ is then the matrix of eigenvectors of $A A^{T}$
- The eigenvalues of $A A^{T}$ are all non-negative because $\Sigma \Sigma^{T}=\Sigma^{2}$ which are the square of the singular values of A

An Example: "Eigenfaces"

- Let's suppose that our data is a collection of images of the faces of individuals

An Example: "Eigenfaces"

- Let's suppose that our data is a collection of images of the faces of individuals
- The goal is, given the "training data", to correctly label unseen images
- Let's suppose that each image is an $s \times s$ array of pixels: $x_{i} \in R^{n}, n=s^{2}$
- As before, construct the matrix $W \in \mathbb{R}^{n \times p}$ whose $i^{\text {th }}$ column is $x_{i}-\sum_{j} \frac{x_{j}}{m}$

An Example: "Eigenfaces"

- Forming the matrix $W W^{T}$ requires a lot of memory
$-s=256$ means $W W^{T}$ is 65536×65536
- Need a faster way to compute this without forming the matrix explicitly
- Could use the singular value decomposition

An Example: "Eigenfaces"

- A different approach when $p \ll n$
- Compute the eigenvectors of $A^{T} A$ (this is an $p \times p$ matrix)
- Let v be an eigenvector of $A^{T} A$ with eigenvalue λ
$-A A^{T} A v=\lambda A v$
- This means that $A v$ is an eigenvector of $A A^{T}$ with eigenvalue λ (or 0)
- Save the top k eigenvectors - called eigenfaces in this example

An Example: "Eigenfaces"

- The data in the matrix is "training data"
- Given a new image, we'd like to determine which, if any, member of the data set that it belongs to
- Step 1: Compute the projection of the recentered image to classify onto each of the k eigenvectors
- This gives us a vector of weights c_{1}, \ldots, c_{k}

An Example: "Eigenfaces"

- The data in the matrix is "training data"
- Given a new image, we'd like to determine which, if any, member of the data set that it belongs to
- Step 2: Determine if the input image is close to one of the faces in the data set
- If the distance between the input and it's approximation is too large, then the input is likely not a face

An Example: "Eigenfaces"

- The data in the matrix is "training data"
- Given a new image, we'd like to determine which, if any, member of the data set that it belongs to
- Step 3: Find the person in the training data that is closest to the new input
- Replace each group of training images by its average
- Compute the distance to the $i^{\text {th }}$ average $\left\|c-a^{i}\right\|$ where a^{i} are the coefficients of the average face for person i

