

Dimensionality Reduction: PCA

Nicholas Ruozzi University of Texas at Dallas

Eigenvalues

• λ is an eigenvalue of a matrix $A \in \mathbb{R}^{n \times n}$ if the linear system $Ax = \lambda x$ has at least one non-zero solution

- If $Ax = \lambda x$ we say that λ is an eigenvalue of A with corresponding eigenvector x

— Could be multiple eigenvectors for the same λ

Eigenvalues of Symmetric Matrices

- If $A \in \mathbb{R}^{n \times n}$ is symmetric, then it has n linearly independent eigenvectors v_1, \dots, v_n corresponding to n real eigenvalues
 - Moreover, it has n linearly independent orthonormal eigenvectors:
 - $v_i^T v_j = 0$ for all $i \neq j$
 - $v_i^T v_i = 1$ for all i

Eigenvalues of Symmetric Matrices

• If $A \in \mathbb{R}^{n \times n}$ is symmetric, then it has n linearly independent eigenvectors v_1, \dots, v_n corresponding to n real eigenvalues

 A symmetric matrix is positive definite if and only if all of its eigenvalues are positive

Example

• The 2x2 identity matrix has all of its eigenvalues equal to 1 with orthonormal eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• The matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ has eigenvalues 0 and 2 with

orthonormal eigenvectors
$$\begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
 and $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

Eigenvalues

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric
- Any $x \in \mathbb{R}^n$ can be written as $x = \sum_{i=1}^n c_i v_i$ where v_1, \dots, v_n are the eigenvectors of A

$$-Ax = \sum_{i=1}^{n} \lambda_i c_i v_i$$

$$-A^2 x = \sum_{i=1}^{n} \lambda_i^2 c_i v_i$$

$$\vdots$$

$$-A^t x = \sum_{i=1}^{n} \lambda_i^t c_i v_i$$

Eigenvalues

- Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric
- Any $x \in \mathbb{R}^n$ can be written as $x = \sum_{i=1}^n c_i v_i$ where v_1, \dots, v_n are the eigenvectors of A
 - $-c_i = v_i^T x$, this is the projection of x along the line given by v_i (assuming that v_i is a unit vector)

Eigenvalues of Symmetric Matrices

• Let $Q \in \mathbb{R}^{n \times n}$ be the matrix whose i^{th} column is v_i and $D \in \mathbb{R}^{n \times n}$ be the diagonal matrix such that $D_{ii} = \lambda_i$

$$-Ax = QDQ^Tx$$

- Can throw away some eigenvectors to approximate this quantity
 - For example, let Q_k be the matrix formed by keeping only the top k eigenvectors and D_k be the diagonal matrix whose diagonal consists of the top k eigenvalues

Frobenius Norm

The Frobenius norm is a matrix norm written as

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n |A_{ij}|^2}$$

• $Q_k D_k Q_k^T$ is the best rank k approximation of the matrix symmetric matrix A with respect to the Frobenius norm

Principal Component Analysis

• Given a collection of data points sampled from some distribution $x_1, \dots, x_p \in \mathbb{R}^n$

- Construct the matrix $X \in \mathbb{R}^{n \times p}$ whose i^{th} column is x_i

 Want to reduce the dimensionality of the data while still maintaining a good approximation of the sample mean and variance

Principal Component Analysis

• Construct the matrix $W \in \mathbb{R}^{n \times p}$ whose i^{th} column is

$$x_i - \frac{\sum_j x_j}{p}$$

- This gives the data a zero mean
- The matrix WW^T is the sample covariance matrix
 - $-WW^T$ is symmetric and positive semidefinite (simple proof later)

Principal Component Analysis

 PCA attempts to find a set of orthogonal vectors that best explain the variance of the sample covariance matrix

— From our previous discussion, these are exactly the eigenvectors of WW^T

PCA in Practice

• Forming the matrix WW^T can require a lot of memory (especially if $n\gg p$)

Need a faster way to compute this without forming the matrix explicitly

- Typical approach: use the singular value decomposition

Singular Value Decomposition (SVD)

• Every matrix $B \in \mathbb{R}^{n \times p}$ admits a decomposition of the form

$$B = U\Sigma V^T$$

- where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, $\Sigma \in \mathbb{R}^{n \times p}$ is non-negative diagonal matrix, and $V \in \mathbb{R}^{p \times p}$ is an orthogonal matrix
- A matrix $C \in \mathbb{R}^{m \times m}$ is orthogonal if $C^T = C^{-1}$. Equivalently, the rows and columns of C are orthonormal vectors

Singular Value Decomposition (SVD)

• Every matrix $B \in \mathbb{R}^{n \times p}$ admits a decomposition of the form

$$B = U\Sigma V^T$$

Diagonal elements of Σ called singular values

- where $U \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, $\Sigma \in \mathbb{R}^{n \times p}$ is non-negative diagonal matrix, and $V \in \mathbb{R}^{p \times p}$ is an orthogonal matrix
- A matrix $C \in \mathbb{R}^{m \times m}$ is orthogonal if $C^T = C^{-1}$. Equivalently, the rows and columns of C are orthonormal vectors

SVD and **PCA**

Returning to PCA

- Let $W = U\Sigma V^T$ be the SVD of W
- $-WW^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T} = U\Sigma\Sigma^{T}U^{T}$
- U is then the matrix of eigenvectors of WW^T
- If we can compute the SVD of W, then we don't need to form the matrix WW^T

SVD and **PCA**

- For any matrix A, AA^T is symmetric and positive semidefinite
 - Let $A = U\Sigma V^T$ be the SVD of A

$$-AA^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T} = U\Sigma\Sigma^{T}U^{T}$$

- U is then the matrix of eigenvectors of AA^T
- The eigenvalues of AA^T are all non-negative because $\Sigma\Sigma^T=\Sigma^2$ which are the square of the singular values of A

 Let's suppose that our data is a collection of images of the faces of individuals

- Let's suppose that our data is a collection of images of the faces of individuals
 - The goal is, given the "training data", to correctly label unseen images
 - Let's suppose that each image is an $s \times s$ array of pixels: $x_i \in R^n$, $n = s^2$
 - As before, construct the matrix $W \in \mathbb{R}^{n \times p}$ whose i^{th} column is $x_i \sum_j \frac{x_j}{m}$

- Forming the matrix WW^T requires a lot of memory
 - -s = 256 means WW^{T} is 65536×65536
 - Need a faster way to compute this without forming the matrix explicitly
 - Could use the singular value decomposition

- A different approach when $p \ll n$
 - Compute the eigenvectors of A^TA (this is an $p \times p$ matrix)
 - Let v be an eigenvector of A^TA with eigenvalue λ
 - $-AA^{T}Av = \lambda Av$
 - This means that Av is an eigenvector of AA^T with eigenvalue λ (or 0)
 - Save the top k eigenvectors called eigenfaces in this example

- The data in the matrix is "training data"
 - Given a new image, we'd like to determine which, if any,
 member of the data set that it belongs to
- Step 1: Compute the projection of the recentered image to classify onto each of the k eigenvectors
 - This gives us a vector of weights c_1 , ..., c_k

- The data in the matrix is "training data"
 - Given a new image, we'd like to determine which, if any,
 member of the data set that it belongs to
- Step 2: Determine if the input image is close to one of the faces in the data set
 - If the distance between the input and it's approximation is too large, then the input is likely not a face

- The data in the matrix is "training data"
 - Given a new image, we'd like to determine which, if any, member of the data set that it belongs to
- Step 3: Find the person in the training data that is closest to the new input
 - Replace each group of training images by its average
 - Compute the distance to the i^{th} average $\|c a^i\|$ where a^i are the coefficients of the average face for person i

