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Binary Variables

• Coin flipping: heads=1, tails=0 with bias 𝜇

𝑝 𝑋 = 1 𝜇 = 𝜇

• Bernoulli Distribution

𝐵𝑒𝑟𝑛 𝑥 𝜇 = 𝜇𝑥 ⋅ 1 − 𝜇 1−𝑥

𝐸 𝑋 = 𝜇

𝑣𝑎𝑟 𝑋 = 𝜇 ⋅ (1 − 𝜇)
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Binary Variables

• 𝑁 coin flips: 𝑋1, … , 𝑋𝑁

𝑝 σ𝑖𝑋𝑖 = 𝑚 𝑁, 𝜇 =
𝑁
𝑚

𝜇𝑚 1 − 𝜇 𝑁−𝑚

• Binomial Distribution

𝐵𝑖𝑛 𝑚 𝑁, 𝜇 =
𝑁
𝑚

𝜇𝑚 1 − 𝜇 𝑁−𝑚

𝐸 ෍

𝑖

𝑋𝑖 = 𝑁𝜇

𝑣𝑎𝑟 ෍

𝑖

𝑋𝑖 = 𝑁𝜇(1 − 𝜇)
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Binomial Distribution
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Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out 

what the probability is that it will flip up heads

– How should we estimate the bias?
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Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out 

what the probability is that it will flip up heads

– How should we estimate the bias?

– With these coin flips, our estimate of the bias is: ?
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Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out 

what the probability is that it will flip up heads

– How should we estimate the bias?

– With these coin flips, our estimate of the bias is: 3/5

• Why is this a good estimate of the bias?
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Coin Flipping – Binomial Distribution

• 𝑃(𝐻𝑒𝑎𝑑𝑠) = 𝜃, 𝑃(𝑇𝑎𝑖𝑙𝑠) = 1 − 𝜃

• Flips are i.i.d.

– Independent events

– Identically distributed according to Binomial distribution

• Our training data consists of 𝛼𝐻 heads and 𝛼𝑇 tails  

𝑝 𝐷 𝜃 = 𝜃𝛼𝐻 ⋅ 1 − 𝜃 𝛼𝑇
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Maximum Likelihood Estimation (MLE)

• Data: Observed set of 𝛼𝐻 heads and 𝛼𝑇 tails  

• Hypothesis: Coin flips follow a binomial distribution 

• Learning: Find the “best” 𝜃

• MLE: Choose  to maximize probability of D given 𝜃
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First Parameter Learning Algorithm

Set derivative to zero, and solve!
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First Parameter Learning Algorithm

Set derivative to zero, and solve!
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Coin Flip MLE

෠𝜃𝑀𝐿𝐸 =
𝛼𝐻

𝛼𝐻 + 𝛼𝑇
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Priors

• Suppose we have 5 coin flips all of which are heads

– Our estimate of the bias is?
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Priors

• Suppose we have 5 coin flips all of which are heads

– MLE would give 𝜃𝑀𝐿𝐸 = 1

– This event occurs with probability 
1

25
=

1

32
for a fair coin

– Are we willing to commit to such a strong conclusion 

with such little evidence?
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Priors

• Priors are a Bayesian mechanism that allow us to take into account 

“prior” knowledge about our belief in the outcome

• Rather than estimating a single 𝜃, consider a distribution over 

possible values of 𝜃 given the data

– Update our prior after seeing data

Our best guess in the 
absence of any data

Our estimate after we 
see some data

Observe flips
e.g.: {tails, tails}

15



Bayesian Learning

Apply Bayes rule:

• Or equivalently: 𝑝 𝜃 𝐷 ∝ 𝑝 𝐷 𝜃 𝑝 𝜃

• For uniform priors this reduces to the MLE objective

Prior

Normalization

Data Likelihood

Posterior 𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃

𝑝 𝐷

𝑝 𝜃 ∝ 1 ⇒ 𝑝 𝜃 𝐷 ∝ 𝑝(𝐷|𝜃)
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Picking Priors

• How do we pick a good prior distribution?

– Could represent expert domain knowledge

– Statisticians choose them to make the posterior distribution 

“nice” (conjugate priors)

• What is a good prior for the bias in the coin flipping problem?
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Picking Priors

• How do we pick a good prior distribution?

– Could represent expert domain knowledge

– Statisticians choose them to make the posterior distribution 

“nice” (conjugate priors)

• What is a good prior for the bias in the coin flipping problem?

– Truncated Gaussian (tough to work with)

– Beta distribution (works well for binary random variables)
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Coin Flips with Beta Distribution

Likelihood function:

Prior: 

Posterior:

= 𝜃𝛼𝐻
+𝛽

𝐻
−1(1 − 𝜃)𝛼𝑇

+𝛽
𝑇
−1



MAP Estimation

• Choosing 𝜃 to maximize the posterior distribution is called 

maximum a posteriori (MAP) estimation

𝜃𝑀𝐴𝑃 = argmax
𝜃

𝑝(𝜃|𝐷)

• The only difference between 𝜃𝑀𝐿𝐸 and 𝜃𝑀𝐴𝑃 is that one 

assumes a uniform prior (MLE) and the other allows an 

arbitrary prior
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Priors

• Suppose we have 5 coin flips all of which are heads

– MLE would give 𝜃𝑀𝐿𝐸 = 1

– MLE with a 𝐵𝑒𝑡𝑎(2,2) prior gives 𝜃𝑀𝐴𝑃 =
6

7
≈ .857

– As we see more data, the effect of the prior diminishes

• 𝜃𝑀𝐴𝑃 =
𝛼𝐻+𝛽𝐻−1

𝛼𝐻+𝛽𝐻+𝛼𝑇+𝛽𝑇−2
≈

𝛼𝐻

𝛼𝐻+𝛼𝑇
for large # of 

observations
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Sample Complexity

• How many coin flips do we need in order to guarantee that our 

learned parameter does not differ too much from the true 

parameter (with high probability)?

• Can use Chernoff bound (again!)

– Suppose 𝑌1, … , 𝑌𝑁 are i.i.d. random variables taking values 

in {0, 1} such that 𝐸𝑝 𝑌𝑖 = 𝑦.  For 𝜖 > 0,

𝑝 𝑦 −
1

𝑁
෍

𝑖

𝑌𝑖 ≥ 𝜖 ≤ 2𝑒−2𝑁𝜖
2
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Sample Complexity

• How many coin flips do we need in order to guarantee that our 

learned parameter does not differ too much from the true 

parameter (with high probability)?

• Can use Chernoff bound (again!)

– For the coin flipping problem with 𝑋1, … , 𝑋𝑛 iid coin flips 

and 𝜖 > 0,

𝑝 𝜃𝑡𝑟𝑢𝑒 −
1

𝑁
෍

𝑖

𝑋𝑖 ≥ 𝜖 ≤ 2𝑒−2𝑁𝜖
2
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Sample Complexity

• How many coin flips do we need in order to guarantee that our 

learned parameter does not differ too much from the true 

parameter (with high probability)?

• Can use Chernoff bound (again!)

– For the coin flipping problem with 𝑋1, … , 𝑋𝑛 iid coin flips 

and 𝜖 > 0,

𝑝 𝜃𝑡𝑟𝑢𝑒 − 𝜃𝑀𝐿𝐸 ≥ 𝜖 ≤ 2𝑒−2𝑁𝜖
2

24



Sample Complexity

• How many coin flips do we need in order to guarantee that our 

learned parameter does not differ too much from the true 

parameter (with high probability)?

• Can use Chernoff bound (again!)

– For the coin flipping problem with 𝑋1, … , 𝑋𝑛 iid coin flips 

and 𝜖 > 0,

𝑝 𝜃𝑡𝑟𝑢𝑒 − 𝜃𝑀𝐿𝐸 ≥ 𝜖 ≤ 2𝑒−2𝑁𝜖
2

𝛿 ≥ 2𝑒−2𝑁𝜖
2
⇒ 𝑁 ≥

1

2𝜖2
ln
2

𝛿
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