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Binary Variables
|

* Coin flipping: heads=1, tails=0 with bias u
p(X =1lp) = u
* Bernoulli Distribution

Bern(x|p) = p* - (1 —p)* ==
ElX]=pu

var(X) = p- (1 —p)




Binary Variables
|

* N coinflips: X4, ..., Xy
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e Binomial Distribution
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Binomial Distribution
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Estimating the Bias of a Coin
N

e Suppose that we have a coin, and we would like to figure out
what the probability is that it will flip up heads

— How should we estimate the bias?
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Estimating the Bias of a Coin

e Suppose that we have a coin, and we would like to figure out
what the probability is that it will flip up heads

— How should we estimate the bias?

— With these coin flips, our estimate of the bias is: 3/5

* Why is this a good estimate of the bias?




Coin Flipping - Binomial Distribution

* P(Heads) =60, P(Tails) = 1—-6
* Flips are i.i.d.

— Independent events

— ldentically distributed according to Binomial distribution
* Qurtraining data consists of oy heads and a1 tails

p(D[6) = 6% - (1 —6)°T
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Maximum Likelihood Estimation (MLE)

Data: Observed set of oy heads and a7 tails

Hypothesis: Coin flips follow a binomial distribution

Leaming: Find the “best” 6

MLE: Choose 0 to maximize probability of D given 6

0

arg meax P(D | 0)
arg m@ax In P(D | 0)




First Parameter Learning Algorithm
N

H = argm@ax In P(D | )

= argm@ax INnO*H (1 — )T

Set derivative to zero, and solve!
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First Parameter Learning Algorithm
N

§ = argmax InP(D|0)

= arg mZax INnO*H (1 — )T
Set derivative to zero, and solve!
d% InP(D|0) = d% [INO“H (1 — 0)*T]
= dile g In0 + arIn(l — 6)]
= osz% In6 + osz% In(1 —0)
Oé_H_ QT ) o551

— 0 —
g 1_g — 0 [MIE
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Coin Flip MLE
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Priors

* Suppose we have 5 coin flips all of which are heads

jas is?

— Qur estimate of the b
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* Suppose we have 5 coin flips all of which are heads

— MLE WOUId give HMLE — 1
— This event occurs with probability 215 = 312 for a fair coin

— Are we willing to commit to such a strong conclusion
with such little evidence?
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Priors

* Priors are a Bayesian mechanism that allow us to take into account
“prior” knowledge about our belief in the outcome

» Ratherthan estimating a single 8, consider a distribution over
possible values of 8 given the data

— Update our prior after seeing data

Our best guess in the Our estimate after we
absence of any data see some data
" Beta(2,2) Beta(3,2)
14y | Observe flips sl
I I e.g.: {tails, tails}
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Bayesian Learning

Apply Bayes rule: Data Likelihood Prlor
} i
«
oIy = PLIOPE) = e
P i _
wosterlor / p(D)
im \ Normalization

nnnnn
parameter value

* Orequivalently: p(8|D) «< p(D|6)p(6)
* For uniform priors this reduces to the MLE objective
p()x1 = p(6|D) < p(D|6)
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Picking Priors
.
* How do we pick a good prior distribution?

— Could represent expert domain knowledge

— Statisticians choose them to make the posterior distribution
“nice” (conjugate priors)

 Whatis a good prior for the bias in the coin flipping problem?
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Picking Priors
.
* How do we pick a good prior distribution?

— Could represent expert domain knowledge

— Statisticians choose them to make the posterior distribution
“nice” (conjugate priors)

 Whatis a good prior for the bias in the coin flipping problem?
— Truncated Gaussian (tough to work with)

— Beta distribution (works well for binary random variables)
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Coin Flips with Beta Distribution

Likelihood function: P(D|0) = 0“H(1 — )T
6Pn—1(1 — 9)Pr—1
B(ﬁH? BT>

Beta(1,1) 16 Beta(2,2) Beta(3,2)

Prior: P(0) = ~ Beta(By, Br)

Beta(30,20)
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Posterior:
P(0| D) x 61 (1 — )T go—1(1 —g)Pr—1
— QaH'I'IBH_l(l — Q)C(T-l-ﬁT—l
= Beta(ag+0Bu, ar+5r)




MAP Estimation

e Choosing 6 to maximize the posterior distribution is called
maximum a posteriori (MAP) estimation

Omap = arg mgXp(HID)

* The only difference between 6,,; r and 6, 4p is that one
assumes a uniform prior (MLE) and the other allows an
arbitrary prior
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* Suppose we have 5 coin flips all of which are heads

— MLE WOUId give HMLE —_ 1

— MLE with a Beta(2,2) prior gives Oy, 4p = = = .857

N o

— As we see more data, the effect of the prior diminishes

aH+.8H_1 ay
e 0 = ~ for large # of
MAP CZH+ﬁH+CZT+ﬁT—2 aytar oria ge 0

observations
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Sample Complexity

* How many coin flips do we need in order to guarantee that our
learned parameter does not differ too much from the true
parameter (with high probability)?

e (Can use Chernoff bound (again!)

— Suppose Y3, ..., Yy are i.i.d. random variables taking values
in {0, 1} suchthat E,,[Y;] = y. Fore > 0,

1 P
p(y—NZYi ZE)SZB 2Ne
l
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Sample Complexity

* How many coin flips do we need in order to guarantee that our
learned parameter does not differ too much from the true
parameter (with high probability)?

e (Can use Chernoff bound (again!)

— For the coin flipping problem with X3, ..., X,, iid coin flips
ande > 0,

1
p( Htrue —NE Xi = E) < 28_2N62
i
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Sample Complexity

* How many coin flips do we need in order to guarantee that our
learned parameter does not differ too much from the true
parameter (with high probability)?

e (Can use Chernoff bound (again!)

— For the coin flipping problem with X3, ..., X,, iid coin flips
ande > 0,
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Sample Complexity

* How many coin flips do we need in order to guarantee that our
learned parameter does not differ too much from the true
parameter (with high probability)?

e (Can use Chernoff bound (again!)

— For the coin flipping problem with X3, ..., X,, iid coin flips
ande > 0,

p(lgtrue — Oyel = €) < 23_2N€2

1 2
§>2e 2N 5 N >—In=
= ¢ _262n5
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