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Last Time

• Parameter learning

– Learning the parameter of a simple coin flipping model

• Prior distributions

• Posterior distributions

• Today:  more parameter learning and naïve Bayes
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Maximum Likelihood Estimation (MLE)

• Data: Observed set of 𝛼𝐻 heads and 𝛼𝑇 tails  

• Hypothesis: Coin flips follow a binomial distribution 

• Learning: Find the “best” 𝜃

• MLE: Choose  to maximize the likelihood (probability of D 

given 𝜃)

𝜃𝑀𝐿𝐸 = argmax
𝜃

𝑝(𝐷|𝜃)
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MAP Estimation

• Choosing 𝜃 to maximize the posterior distribution is called 

maximum a posteriori (MAP) estimation

𝜃𝑀𝐴𝑃 = argmax
𝜃

𝑝(𝜃|𝐷)

• The only difference between 𝜃𝑀𝐿𝐸 and 𝜃𝑀𝐴𝑃 is that one 

assumes a uniform prior (MLE) and the other allows an 

arbitrary prior
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Sample Complexity

• How many coin flips do we need in order to guarantee that our 

learned parameter does not differ too much from the true 

parameter (with high probability)?

• Can use Chernoff bound (again!)

– Suppose 𝑌1, … , 𝑌𝑁 are i.i.d. random variables taking values 

in {0, 1} such that 𝐸𝑝 𝑌𝑖 = 𝑦.  For 𝜖 > 0,

𝑝 𝑦 −
1

𝑁


𝑖

𝑌𝑖 ≥ 𝜖 ≤ 2𝑒−2𝑁𝜖
2
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Sample Complexity

• How many coin flips do we need in order to guarantee that our 

learned parameter does not differ too much from the true 

parameter (with high probability)?

• Can use Chernoff bound (again!)

– For the coin flipping problem with 𝑋1, … , 𝑋𝑛 iid coin flips 

and 𝜖 > 0,

𝑝 𝜃𝑡𝑟𝑢𝑒 −
1

𝑁


𝑖

𝑋𝑖 ≥ 𝜖 ≤ 2𝑒−2𝑁𝜖
2
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Sample Complexity

• How many coin flips do we need in order to guarantee that our 

learned parameter does not differ too much from the true 

parameter (with high probability)?

• Can use Chernoff bound (again!)

– For the coin flipping problem with 𝑋1, … , 𝑋𝑛 iid coin flips 

and 𝜖 > 0,

𝑝 𝜃𝑡𝑟𝑢𝑒 − 𝜃𝑀𝐿𝐸 ≥ 𝜖 ≤ 2𝑒−2𝑁𝜖
2
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Sample Complexity

• How many coin flips do we need in order to guarantee that our 

learned parameter does not differ too much from the true 

parameter (with high probability)?

• Can use Chernoff bound (again!)

– For the coin flipping problem with 𝑋1, … , 𝑋𝑛 iid coin flips 

and 𝜖 > 0,

𝑝 𝜃𝑡𝑟𝑢𝑒 − 𝜃𝑀𝐿𝐸 ≥ 𝜖 ≤ 2𝑒−2𝑁𝜖
2

𝛿 ≥ 2𝑒−2𝑁𝜖
2
⇒ 𝑁 ≥

1

2𝜖2
ln
2

𝛿
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MLE for Gaussian Distributions

• Two parameter 

distribution 

characterized by a 

mean and a variance
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Some properties of Gaussians
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• Affine transformation (multiplying by scalar and adding a 
constant) are Gaussian

– 𝑋 ~ 𝑁(𝜇, 𝜎2)

– 𝑌 = 𝑎𝑋 + 𝑏 ⇒ 𝑌 ~ 𝑁(𝑎𝜇 + 𝑏, 𝑎2𝜎2)

• Sum of Gaussians is Gaussian

– 𝑋 ~ 𝑁(𝜇𝑋,𝜎𝑋
2), 𝑌 ~ 𝑁(𝜇𝑌,𝜎𝑌

2)

– 𝑍 = 𝑋 + 𝑌 ⇒ 𝑍 ~ 𝑁(𝜇𝑋 + 𝜇𝑌, 𝜎𝑋
2 + 𝜎𝑌

2)

• Easy to differentiate, as we will see soon!



Learning a Gaussian

• Collect data

– Hopefully, i.i.d. samples

– e.g., exam scores

• Learn parameters

– Mean: μ

– Variance: σ

𝑖 Exam Score

0 85

1 95

2 100

3 12

… …

99 89
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MLE for Gaussian:
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• Probability of 𝑁 i.i.d. samples 𝐷 = 𝑥(1), … , 𝑥(𝑁)

𝑝 𝐷 𝜇, 𝜎 =
1

2𝜋𝜎2

𝑁

ෑ

𝑖=1

𝑁

𝑒
−
𝑥 𝑖 −𝜇

2

2𝜎2

• Log-likelihood of the data

ln 𝑝(𝐷|𝜇, 𝜎) = −
𝑁

2
ln 2𝜋𝜎2 −

𝑖=1

𝑁
𝑥 𝑖 − 𝜇

2

2𝜎2



MLE for the Mean of a Gaussian

13

𝜕

𝜕𝜇
ln 𝑝(𝐷|𝜇, 𝜎) =

𝜕

𝜕𝜇
−
𝑁

2
ln 2𝜋𝜎2 −

𝑖=1

𝑁
𝑥 𝑖 − 𝜇

2

2𝜎2

=
𝜕

𝜕𝜇
−

𝑖=1

𝑁
𝑥 𝑖 − 𝜇

2

2𝜎2

= −

𝑖=1

𝑁
𝑥 𝑖 − 𝜇

𝜎2

=
𝑁𝜇 − σ𝑖=1

𝑁 𝑥 𝑖

𝜎2
= 0

𝜇𝑀𝐿𝐸 =
1

𝑁


𝑖=1

𝑁

𝑥 𝑖



MLE for Variance
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𝜕

𝜕𝜎
ln 𝑝(𝐷|𝜇, 𝜎) =

𝜕

𝜕𝜎
−
𝑁

2
ln 2𝜋𝜎2 −

𝑖=1

𝑁
𝑥 𝑖 − 𝜇

2

2𝜎2

= −
𝑁

𝜎
+

𝜕

𝜕𝜎
−

𝑖=1

𝑁
𝑥 𝑖 − 𝜇

2

2𝜎2

= −
𝑁

𝜎
+

𝑖=1

𝑁
𝑥 𝑖 − 𝜇

2

𝜎3
= 0

𝜎𝑀𝐿𝐸
2 =

1

𝑁


𝑖=1

𝑁

𝑥 𝑖 − 𝜇𝑀𝐿𝐸
2



Learning Gaussian parameters

𝜇𝑀𝐿𝐸 =
1

𝑁


𝑖=1

𝑁

𝑥 𝑖

𝜎𝑀𝐿𝐸
2 =

1

𝑁


𝑖=1

𝑁

𝑥 𝑖 − 𝜇𝑀𝐿𝐸
2

• MLE for the variance of a Gaussian is biased

– Expected result of estimation is not true parameter! 

– Unbiased variance estimator

𝜎𝑢𝑛𝑏𝑖𝑎𝑠𝑒𝑑
2 =

1

𝑁 − 1


𝑖=1

𝑁

𝑥 𝑖 − 𝜇𝑀𝐿𝐸
2
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Bayesian Categorization/Classification

• Given features 𝑥 = (𝑥1, … , 𝑥𝑚) predict a label 𝑦

• If we had a joint distribution over 𝑥 and 𝑦, given 𝑥 we could 

find the label using MAP inference

arg max
𝑦

𝑝(𝑦|𝑥1, … , 𝑥𝑚)

• Can compute this in exactly the same way that we did 

before using Bayes rule:

𝑝 𝑦 𝑥1, … , 𝑥𝑚 =
𝑝 𝑥1, … , 𝑥𝑚 𝑦 𝑝 𝑦

𝑝 𝑥1, … , 𝑥𝑚
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Article Classification

• Given a collection of news articles labeled by topic, goal is, 

given a new news article to predict its topic

– One possible feature vector:

• One feature for each word in the document, in order

– 𝑥𝑖 corresponds to the 𝑖𝑡ℎ word

– 𝑥𝑖 can take a different value for each word in the 

dictionary
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Text Classification
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Text Classification

• 𝑥1, 𝑥2, … is sequence of words in document

• The set of all possible features (and hence 𝑝(𝑦|𝑥)) is huge

– Article at least 1000 words, 𝑥 = (𝑥1, … , 𝑥1000)

– 𝑥𝑖 represents 𝑖𝑡ℎword in document

• Can be any word in the dictionary – at least 10,000 words

– 10,0001000 = 104000 possible values

– Atoms in Universe: ~1080
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Bag of Words Model

• Typically assume position in document doesn’t matter

𝑝 𝑋𝑖 = 𝑥𝑖 𝑌 = 𝑦 = 𝑝(𝑋𝑘 = 𝑥𝑖|𝑌 = 𝑦)

– All positions have the same distribution

– Ignores the order of words 

– Sounds like a bad assumption, but often works well!

• Features

– Set of all possible words and their corresponding 
frequencies (number of times it occurs in the document)
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Bag of Words

aardvark 0

about2

all 2

Africa 1

apple0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0
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Need to Simplify Somehow

• Even with the bag of words assumption, there are too many 

possible outcomes

– Too many probabilities

𝑝(𝑥1, … , 𝑥𝑚|𝑦)

• Can we assume some are the same?

𝑝(𝑥1, 𝑥2|𝑦 ) = 𝑝(𝑥1|𝑦) 𝑝(𝑥2|𝑦)

– This is a conditional independence assumption
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Conditional Independence

• X is conditionally independent of Y  given Z, if the 

probability distribution for X is independent of the value of 

Y, given the value of Z

𝑝 𝑋 𝑌, 𝑍 = 𝑃(𝑋|𝑍)

• Equivalent to

𝑝 𝑋, 𝑌 𝑍 = 𝑝 𝑋 𝑍 𝑃(𝑌|𝑍)
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Naïve Bayes

• Naïve Bayes assumption

– Features are independent given class label

𝑝(𝑥1, 𝑥2|𝑦 ) = 𝑝(𝑥1|𝑦) 𝑝(𝑥2|𝑦)

– More generally

𝑝 𝑥1, … , 𝑥𝑚|𝑦 =ෑ

𝑖=1

𝑚

𝑝(𝑥𝑖|𝑦)

• How many parameters now?

– Suppose 𝑥 is composed of 𝑚 binary features
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The Naïve Bayes Classifier

• Given

– Prior 𝑝(𝑦)

– 𝑚 conditionally independent 

features 𝑋 given the class 𝑌

– For each 𝑋𝑖, we have likelihood 𝑃(𝑋𝑖|𝑌)

• Classify via

𝑦∗ = ℎ𝑁𝐵 𝑥 = argmax
𝑦

𝑝 𝑦 𝑝(𝑥1, … , 𝑥𝑚|𝑦)

= argmax
𝑦

𝑝(𝑦)ෑ

𝑖

𝑚

𝑝(𝑥𝑖|𝑦)

𝑌

𝑋1 𝑋𝑛𝑋2
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MLE for the Parameters of NB

• Given dataset, count occurrences for all pairs

– 𝐶𝑜𝑢𝑛𝑡(𝑋𝑖 = 𝑥𝑖 , 𝑌 = 𝑦) is the number of samples in which 

𝑋𝑖 = 𝑥𝑖 and 𝑌 = 𝑦

• MLE for discrete NB

𝑝 𝑌 = 𝑦 =
𝐶𝑜𝑢𝑛𝑡 𝑌 = 𝑦

σ𝑦′ 𝐶𝑜𝑢𝑛𝑡(𝑌 = 𝑦′)

𝑝 𝑋𝑖 = 𝑥𝑖 𝑌 = 𝑦 =
𝐶𝑜𝑢𝑛𝑡 𝑋𝑖 = 𝑥𝑖 , 𝑌 = 𝑦

σ
𝑥𝑖
′ 𝐶𝑜𝑢𝑛𝑡 (𝑋𝑖 = 𝑥𝑖

′, 𝑌 = 𝑦)
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Naïve Bayes Calculations
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Subtleties of NB Classifier: #1 

• Usually, features are not conditionally independent:

𝑝 𝑥1, … , 𝑥𝑚 𝑦 ≠ෑ

𝑖=1

𝑚

𝑝(𝑥𝑖|𝑦)

• The naïve Bayes assumption is often violated, yet it performs 
surprisingly well in many cases

• Plausible reason: Only need the probability of the correct class 
to be the largest!

– Example: binary classification; just need to figure out the correct side of 
0.5 and not the actual probability (0.51 is the same as 0.99).
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Subtleties of NB Classifier: #2 

• What if you never see a training instance  (𝑋1 = 𝑎, 𝑌 = 𝑏)

– Example: you did not see the word Enlargement in spam!

– Then 𝑝 𝑋1 = 𝑎 𝑌 = 𝑏 = 0

– Thus no matter what values 𝑋2, ⋯ , 𝑋𝑚take

𝑃 𝑋1 = a, 𝑋2 = 𝑥2, ⋯ , 𝑋𝑚 = 𝑥𝑚 𝑌 = 𝑏 = 0

– Why?
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Subtleties of NB Classifier: #2 

• To fix this, use a prior!

– Already saw how to do this in the coin-flipping example using the 
Beta distribution

– For NB over discrete spaces, can use the Dirichlet prior

– The Dirichlet distribution is a distribution over 𝑧1, … , 𝑧𝑘 ∈ (0,1)
such that 𝑧1 +⋯+ 𝑧𝑘 = 1 characterized by 𝑘 parameters 
𝛼1, … , 𝛼𝑘

𝑓 𝑧1, … , 𝑧𝑘; 𝛼1, … , 𝛼𝑘 ∝ෑ

𝑖=1

𝑘

𝑧𝑖
𝛼𝑖−1

• Called smoothing, what are the MLE estimates under these kinds of 
priors?
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